三维手性结构在动态冲击下的变形行为和吸能性能的拓扑研究

IF 1.4 4区 工程技术 Q3 ENGINEERING, MECHANICAL Journal of Strain Analysis for Engineering Design Pub Date : 2022-06-02 DOI:10.1177/03093247221101803
Yuchen Wei, Chunyang Huang, Ling Ren, Yiming Liang, Zhaobo Wu, Mengqi Yuan
{"title":"三维手性结构在动态冲击下的变形行为和吸能性能的拓扑研究","authors":"Yuchen Wei, Chunyang Huang, Ling Ren, Yiming Liang, Zhaobo Wu, Mengqi Yuan","doi":"10.1177/03093247221101803","DOIUrl":null,"url":null,"abstract":"The dynamic deformation behavior and energy absorption characteristics of the 3D chiral structures were analyzed by the explicit dynamics analysis module of ANSYS/LS-DYNA. The 3D chiral structure arrayed with different micro-cell parameters cells are established. The respective influences of impact velocities, rotation angles, number and diameter of beams on the deformation behaviors, the dynamic plateau stresses, the absorbed energy, and crush stress efficiency (CSE) are explored in detail. It is shown that the 3D chiral structure exhibits torsional effect and has better energy absorption properties under low-speed impact. At high speed impact, the 3D chiral structure is affected by the impact reinforcement. This leads to a segmentation characteristic between plateau stress and impact velocity for 3D chiral structures. For the given impact velocity, the dynamic plateau stresses are related to the number and diameter of beam by a power law and a quadratic curves, respectively. The results of this study provide scientific guidance and technical support for the optimization and effective design of 3D chiral structures.","PeriodicalId":50038,"journal":{"name":"Journal of Strain Analysis for Engineering Design","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topological study about deformation behavior and energy absorption performances of 3D chiral structures under dynamic impacts\",\"authors\":\"Yuchen Wei, Chunyang Huang, Ling Ren, Yiming Liang, Zhaobo Wu, Mengqi Yuan\",\"doi\":\"10.1177/03093247221101803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dynamic deformation behavior and energy absorption characteristics of the 3D chiral structures were analyzed by the explicit dynamics analysis module of ANSYS/LS-DYNA. The 3D chiral structure arrayed with different micro-cell parameters cells are established. The respective influences of impact velocities, rotation angles, number and diameter of beams on the deformation behaviors, the dynamic plateau stresses, the absorbed energy, and crush stress efficiency (CSE) are explored in detail. It is shown that the 3D chiral structure exhibits torsional effect and has better energy absorption properties under low-speed impact. At high speed impact, the 3D chiral structure is affected by the impact reinforcement. This leads to a segmentation characteristic between plateau stress and impact velocity for 3D chiral structures. For the given impact velocity, the dynamic plateau stresses are related to the number and diameter of beam by a power law and a quadratic curves, respectively. The results of this study provide scientific guidance and technical support for the optimization and effective design of 3D chiral structures.\",\"PeriodicalId\":50038,\"journal\":{\"name\":\"Journal of Strain Analysis for Engineering Design\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Strain Analysis for Engineering Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/03093247221101803\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Strain Analysis for Engineering Design","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/03093247221101803","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

利用ANSYS/LS-DYNA显式动力学分析模块,分析了三维手性结构的动态变形行为和能量吸收特性。建立了具有不同微单元参数的三维手性结构。详细探讨了冲击速度、旋转角度、梁数和梁径对变形行为、动态平台应力、吸收能和压应力效率(CSE)的影响。结果表明,三维手性结构在低速冲击下表现出扭转效应,具有较好的吸能性能。在高速冲击下,三维手性结构受到冲击强化的影响。这导致了三维手性结构的平台应力和冲击速度之间的分割特征。在一定的冲击速度下,动态平台应力与梁数和梁径分别呈幂律关系和二次曲线关系。研究结果为三维手性结构的优化和有效设计提供了科学指导和技术支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Topological study about deformation behavior and energy absorption performances of 3D chiral structures under dynamic impacts
The dynamic deformation behavior and energy absorption characteristics of the 3D chiral structures were analyzed by the explicit dynamics analysis module of ANSYS/LS-DYNA. The 3D chiral structure arrayed with different micro-cell parameters cells are established. The respective influences of impact velocities, rotation angles, number and diameter of beams on the deformation behaviors, the dynamic plateau stresses, the absorbed energy, and crush stress efficiency (CSE) are explored in detail. It is shown that the 3D chiral structure exhibits torsional effect and has better energy absorption properties under low-speed impact. At high speed impact, the 3D chiral structure is affected by the impact reinforcement. This leads to a segmentation characteristic between plateau stress and impact velocity for 3D chiral structures. For the given impact velocity, the dynamic plateau stresses are related to the number and diameter of beam by a power law and a quadratic curves, respectively. The results of this study provide scientific guidance and technical support for the optimization and effective design of 3D chiral structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Strain Analysis for Engineering Design
Journal of Strain Analysis for Engineering Design 工程技术-材料科学:表征与测试
CiteScore
3.50
自引率
6.20%
发文量
25
审稿时长
>12 weeks
期刊介绍: The Journal of Strain Analysis for Engineering Design provides a forum for work relating to the measurement and analysis of strain that is appropriate to engineering design and practice. "Since launching in 1965, The Journal of Strain Analysis has been a collegiate effort, dedicated to providing exemplary service to our authors. We welcome contributions related to analytical, experimental, and numerical techniques for the analysis and/or measurement of stress and/or strain, or studies of relevant material properties and failure modes. Our international Editorial Board contains experts in all of these fields and is keen to encourage papers on novel techniques and innovative applications." Professor Eann Patterson - University of Liverpool, UK This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Anti-plane analysis of a crack terminating at interface of the isotropic half-planes bonded to intact orthotropic layers Compressive performance of paper honeycomb core layer with double-hole in cell walls A novel multiaxial fatigue life prediction model based on the critical plane theory and machine-learning method Non-linear analysis of the flexural-torsional stability of slender tropical glulam beams Approximate methods for contact problems involving beams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1