Sadeq Khaleefah Hanoon, A. F. Abdullah, H. Shafri, A. Wayayok
{"title":"基于模糊逻辑函数集成的城市地区脆弱性综合评价——以伊拉克南部纳西里耶市为例","authors":"Sadeq Khaleefah Hanoon, A. F. Abdullah, H. Shafri, A. Wayayok","doi":"10.3390/earth3020040","DOIUrl":null,"url":null,"abstract":"Globally, urbanisation has been the most significant factor causing land use and land cover changes due to accelerated population growth and limited governmental regulation. Urban communities worldwide, particularly in Iraq, are on the frontline for dealing with threats associated with environmental degradation, climate change and social inequality. However, with respect to the effects of urbanization, most previous studies have overlooked ecological problems, and have disregarded strategic environmental assessment, which is an effective tool for ensuring sustainable development. This study aims to provide a comprehensive vulnerability assessment model for urban areas experiencing environmental degradation, rapid urbanisation and high population growth, to help formulate policies for urban communities and to support sustainable livelihoods in Iraq and other developing countries. The proposed model was developed by integrating three functions of fuzzy logic: the fuzzy analytic hierarchy process, fuzzy linear membership and fuzzy overlay gamma. Application of the model showed that 11 neighbourhoods in the study area, and more than 175,000 individuals, or 25% of the total population, were located in very high vulnerability regions. The proposed model offers a decision support system for allocating required financial resources and efficiently implementing mitigation processes for the most vulnerable urban areas.","PeriodicalId":51020,"journal":{"name":"Earth Interactions","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Comprehensive Vulnerability Assessment of Urban Areas Using an Integration of Fuzzy Logic Functions: Case Study of Nasiriyah City in South Iraq\",\"authors\":\"Sadeq Khaleefah Hanoon, A. F. Abdullah, H. Shafri, A. Wayayok\",\"doi\":\"10.3390/earth3020040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Globally, urbanisation has been the most significant factor causing land use and land cover changes due to accelerated population growth and limited governmental regulation. Urban communities worldwide, particularly in Iraq, are on the frontline for dealing with threats associated with environmental degradation, climate change and social inequality. However, with respect to the effects of urbanization, most previous studies have overlooked ecological problems, and have disregarded strategic environmental assessment, which is an effective tool for ensuring sustainable development. This study aims to provide a comprehensive vulnerability assessment model for urban areas experiencing environmental degradation, rapid urbanisation and high population growth, to help formulate policies for urban communities and to support sustainable livelihoods in Iraq and other developing countries. The proposed model was developed by integrating three functions of fuzzy logic: the fuzzy analytic hierarchy process, fuzzy linear membership and fuzzy overlay gamma. Application of the model showed that 11 neighbourhoods in the study area, and more than 175,000 individuals, or 25% of the total population, were located in very high vulnerability regions. The proposed model offers a decision support system for allocating required financial resources and efficiently implementing mitigation processes for the most vulnerable urban areas.\",\"PeriodicalId\":51020,\"journal\":{\"name\":\"Earth Interactions\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth Interactions\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3390/earth3020040\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Interactions","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/earth3020040","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Comprehensive Vulnerability Assessment of Urban Areas Using an Integration of Fuzzy Logic Functions: Case Study of Nasiriyah City in South Iraq
Globally, urbanisation has been the most significant factor causing land use and land cover changes due to accelerated population growth and limited governmental regulation. Urban communities worldwide, particularly in Iraq, are on the frontline for dealing with threats associated with environmental degradation, climate change and social inequality. However, with respect to the effects of urbanization, most previous studies have overlooked ecological problems, and have disregarded strategic environmental assessment, which is an effective tool for ensuring sustainable development. This study aims to provide a comprehensive vulnerability assessment model for urban areas experiencing environmental degradation, rapid urbanisation and high population growth, to help formulate policies for urban communities and to support sustainable livelihoods in Iraq and other developing countries. The proposed model was developed by integrating three functions of fuzzy logic: the fuzzy analytic hierarchy process, fuzzy linear membership and fuzzy overlay gamma. Application of the model showed that 11 neighbourhoods in the study area, and more than 175,000 individuals, or 25% of the total population, were located in very high vulnerability regions. The proposed model offers a decision support system for allocating required financial resources and efficiently implementing mitigation processes for the most vulnerable urban areas.
期刊介绍:
Publishes research on the interactions among the atmosphere, hydrosphere, biosphere, cryosphere, and lithosphere, including, but not limited to, research on human impacts, such as land cover change, irrigation, dams/reservoirs, urbanization, pollution, and landslides. Earth Interactions is a joint publication of the American Meteorological Society, American Geophysical Union, and American Association of Geographers.