求助PDF
{"title":"e波段k区Gbps无线电链路的吞吐量估计","authors":"Attila Hilt","doi":"10.33180/infmidem2022.103","DOIUrl":null,"url":null,"abstract":"Nowadays covid virus changes our work, learning and life-style. Broadband telecommunication channels are required for remote work, e-learning and video conferencing. Optical-fiber access offers the required wide bandwidths and low latencies. However, due to technical and business reasons optical-fiber cannot yet reach all homes, all offices or industrial plants. Mobile network sites often meet similar problems in urban environment. Since the introduction of mobile data (e.g., High-Speed Packet Access in 3G networks) and with the actual 4G expansion and 5G deployments, more and more cell-sites are connected to the fiber backhaul. But not all radio nodes can benefit the enormous bandwidth provided by optical-fiber access. The missing section between the fiber end-point and the site is often only few hundred meters, one or two kilometers. More and more millimeter-wave radios are deployed to reach the fiber access point. As radio links suffer from rain, atmospheric attenuation and interference, careful design is required. This paper focuses on digital radio links operating in the E-band (71-86 GHz) in Central Europe, where rainfall rates reach 42 mm/h (e.g., Slovenia and Hungary). In the paper a step-by-step planning method is shown to estimate the yearly radio throughput. It is shown that E-band radio links can reach Gigabit/s (Gbps) speed and availability figures comparable to optical-fiber connections. © 2022 Society for Microelectronics, Electric Components and Materials. All rights reserved.","PeriodicalId":56293,"journal":{"name":"Informacije Midem-Journal of Microelectronics Electronic Components and Materials","volume":"28 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Throughput Estimation of K-zone Gbps Radio Links Operating in the E-band\",\"authors\":\"Attila Hilt\",\"doi\":\"10.33180/infmidem2022.103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays covid virus changes our work, learning and life-style. Broadband telecommunication channels are required for remote work, e-learning and video conferencing. Optical-fiber access offers the required wide bandwidths and low latencies. However, due to technical and business reasons optical-fiber cannot yet reach all homes, all offices or industrial plants. Mobile network sites often meet similar problems in urban environment. Since the introduction of mobile data (e.g., High-Speed Packet Access in 3G networks) and with the actual 4G expansion and 5G deployments, more and more cell-sites are connected to the fiber backhaul. But not all radio nodes can benefit the enormous bandwidth provided by optical-fiber access. The missing section between the fiber end-point and the site is often only few hundred meters, one or two kilometers. More and more millimeter-wave radios are deployed to reach the fiber access point. As radio links suffer from rain, atmospheric attenuation and interference, careful design is required. This paper focuses on digital radio links operating in the E-band (71-86 GHz) in Central Europe, where rainfall rates reach 42 mm/h (e.g., Slovenia and Hungary). In the paper a step-by-step planning method is shown to estimate the yearly radio throughput. It is shown that E-band radio links can reach Gigabit/s (Gbps) speed and availability figures comparable to optical-fiber connections. © 2022 Society for Microelectronics, Electric Components and Materials. All rights reserved.\",\"PeriodicalId\":56293,\"journal\":{\"name\":\"Informacije Midem-Journal of Microelectronics Electronic Components and Materials\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Informacije Midem-Journal of Microelectronics Electronic Components and Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.33180/infmidem2022.103\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informacije Midem-Journal of Microelectronics Electronic Components and Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.33180/infmidem2022.103","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 5
引用
批量引用
Throughput Estimation of K-zone Gbps Radio Links Operating in the E-band
Nowadays covid virus changes our work, learning and life-style. Broadband telecommunication channels are required for remote work, e-learning and video conferencing. Optical-fiber access offers the required wide bandwidths and low latencies. However, due to technical and business reasons optical-fiber cannot yet reach all homes, all offices or industrial plants. Mobile network sites often meet similar problems in urban environment. Since the introduction of mobile data (e.g., High-Speed Packet Access in 3G networks) and with the actual 4G expansion and 5G deployments, more and more cell-sites are connected to the fiber backhaul. But not all radio nodes can benefit the enormous bandwidth provided by optical-fiber access. The missing section between the fiber end-point and the site is often only few hundred meters, one or two kilometers. More and more millimeter-wave radios are deployed to reach the fiber access point. As radio links suffer from rain, atmospheric attenuation and interference, careful design is required. This paper focuses on digital radio links operating in the E-band (71-86 GHz) in Central Europe, where rainfall rates reach 42 mm/h (e.g., Slovenia and Hungary). In the paper a step-by-step planning method is shown to estimate the yearly radio throughput. It is shown that E-band radio links can reach Gigabit/s (Gbps) speed and availability figures comparable to optical-fiber connections. © 2022 Society for Microelectronics, Electric Components and Materials. All rights reserved.