{"title":"毫米波遥感测量受冲击介质中激波和粒子速度","authors":"B. Rougier, H. Aubert, A. Lefrançois","doi":"10.23919/EUMC.2018.8541781","DOIUrl":null,"url":null,"abstract":"A millimeter-wave remote sensing technique is used here as a noninvasive and continuous approach for the real-time measurement of shock wave velocity as well as the velocity of the shocked dielectric material during an impact. Experimental results obtained from planar symmetric impacts on PolyMethyl MethAcrylate (PMMA) cylinders are discussed and demonstrate that the proposed millimeter-wave remote sensing technique is highly convenient for deriving both the velocity of the shock wave and velocity of the shocked PMMA material. The proposed approach is applicable to any dielectric material subject to an impact and is an excellent candidate for deriving the equation of state of shocked materials.","PeriodicalId":6472,"journal":{"name":"2018 48th European Microwave Conference (EuMC)","volume":"21 1","pages":"855-858"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Measurement of Shock Wave and Particle Velocities in Shocked Dielectric Material from Millimeter-Wave Remote Sensing\",\"authors\":\"B. Rougier, H. Aubert, A. Lefrançois\",\"doi\":\"10.23919/EUMC.2018.8541781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A millimeter-wave remote sensing technique is used here as a noninvasive and continuous approach for the real-time measurement of shock wave velocity as well as the velocity of the shocked dielectric material during an impact. Experimental results obtained from planar symmetric impacts on PolyMethyl MethAcrylate (PMMA) cylinders are discussed and demonstrate that the proposed millimeter-wave remote sensing technique is highly convenient for deriving both the velocity of the shock wave and velocity of the shocked PMMA material. The proposed approach is applicable to any dielectric material subject to an impact and is an excellent candidate for deriving the equation of state of shocked materials.\",\"PeriodicalId\":6472,\"journal\":{\"name\":\"2018 48th European Microwave Conference (EuMC)\",\"volume\":\"21 1\",\"pages\":\"855-858\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 48th European Microwave Conference (EuMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/EUMC.2018.8541781\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 48th European Microwave Conference (EuMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUMC.2018.8541781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Measurement of Shock Wave and Particle Velocities in Shocked Dielectric Material from Millimeter-Wave Remote Sensing
A millimeter-wave remote sensing technique is used here as a noninvasive and continuous approach for the real-time measurement of shock wave velocity as well as the velocity of the shocked dielectric material during an impact. Experimental results obtained from planar symmetric impacts on PolyMethyl MethAcrylate (PMMA) cylinders are discussed and demonstrate that the proposed millimeter-wave remote sensing technique is highly convenient for deriving both the velocity of the shock wave and velocity of the shocked PMMA material. The proposed approach is applicable to any dielectric material subject to an impact and is an excellent candidate for deriving the equation of state of shocked materials.