{"title":"基于应变计的测定缸内弹丸速度和气体压力的方法","authors":"Sreejith Vattaparambil Sreedharan, Nachiketa Tiwari, Girijesh Mathur, Rituraj Dwivedi","doi":"10.1177/03093247231192732","DOIUrl":null,"url":null,"abstract":"Knowledge of internal ballistic pressure and projectile velocity is required to ensure gun safety, reliability, calculation of its range, and evaluation of ammunition. However, existing methods for determining the same are either overly complex, costly or have limitations in their applicability. In this work, the authors address this need by proposing a reliable, simple, cheap, and non-destructive method for determining in-bore pressure, projectile velocity, and acceleration profile using strain measurements. Data from strain gauges were used to detect the projectile’s arrival time at different locations in the barrel and computed projectile velocity and acceleration as a function of projectile position. Finally, acceleration data was used to calculate the pressure behind the projectile. Results were verified using alternative experimental and simulation techniques on two different barrels with different ammunition. It was found that the proposed method works well and thus can be reliably used in similar applications elsewhere.","PeriodicalId":50038,"journal":{"name":"Journal of Strain Analysis for Engineering Design","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strain gauge-based method to determine in-cylinder projectile velocity and gas pressure\",\"authors\":\"Sreejith Vattaparambil Sreedharan, Nachiketa Tiwari, Girijesh Mathur, Rituraj Dwivedi\",\"doi\":\"10.1177/03093247231192732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Knowledge of internal ballistic pressure and projectile velocity is required to ensure gun safety, reliability, calculation of its range, and evaluation of ammunition. However, existing methods for determining the same are either overly complex, costly or have limitations in their applicability. In this work, the authors address this need by proposing a reliable, simple, cheap, and non-destructive method for determining in-bore pressure, projectile velocity, and acceleration profile using strain measurements. Data from strain gauges were used to detect the projectile’s arrival time at different locations in the barrel and computed projectile velocity and acceleration as a function of projectile position. Finally, acceleration data was used to calculate the pressure behind the projectile. Results were verified using alternative experimental and simulation techniques on two different barrels with different ammunition. It was found that the proposed method works well and thus can be reliably used in similar applications elsewhere.\",\"PeriodicalId\":50038,\"journal\":{\"name\":\"Journal of Strain Analysis for Engineering Design\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Strain Analysis for Engineering Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/03093247231192732\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Strain Analysis for Engineering Design","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/03093247231192732","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Strain gauge-based method to determine in-cylinder projectile velocity and gas pressure
Knowledge of internal ballistic pressure and projectile velocity is required to ensure gun safety, reliability, calculation of its range, and evaluation of ammunition. However, existing methods for determining the same are either overly complex, costly or have limitations in their applicability. In this work, the authors address this need by proposing a reliable, simple, cheap, and non-destructive method for determining in-bore pressure, projectile velocity, and acceleration profile using strain measurements. Data from strain gauges were used to detect the projectile’s arrival time at different locations in the barrel and computed projectile velocity and acceleration as a function of projectile position. Finally, acceleration data was used to calculate the pressure behind the projectile. Results were verified using alternative experimental and simulation techniques on two different barrels with different ammunition. It was found that the proposed method works well and thus can be reliably used in similar applications elsewhere.
期刊介绍:
The Journal of Strain Analysis for Engineering Design provides a forum for work relating to the measurement and analysis of strain that is appropriate to engineering design and practice.
"Since launching in 1965, The Journal of Strain Analysis has been a collegiate effort, dedicated to providing exemplary service to our authors. We welcome contributions related to analytical, experimental, and numerical techniques for the analysis and/or measurement of stress and/or strain, or studies of relevant material properties and failure modes. Our international Editorial Board contains experts in all of these fields and is keen to encourage papers on novel techniques and innovative applications." Professor Eann Patterson - University of Liverpool, UK
This journal is a member of the Committee on Publication Ethics (COPE).