在现有数据速率有限的系统中实现的电力驱动应用的预测和健康管理

B. Klima, Ludek Buchta, M. Doseděl, Z. Havránek, P. Blaha
{"title":"在现有数据速率有限的系统中实现的电力驱动应用的预测和健康管理","authors":"B. Klima, Ludek Buchta, M. Doseděl, Z. Havránek, P. Blaha","doi":"10.1109/ETFA.2019.8869520","DOIUrl":null,"url":null,"abstract":"Importance of the condition monitoring and predictive maintenance in motion systems is growing up as motion systems quantum and their complexity (number of axes, performance parameters) increases with increasing the automation of huge range of human activities and manufacturing processes. Probability of failures increases with the system complexity.Many faults and indication of their propagation in the electric drives would require additional sensors or hardware, higher bandwidth and sampling frequencies of feedback sensors, high computing power etc. for development of sophisticated methods to detect specific faults with good sensitivity, robustness and reliability under any operating condition.This paper presents an approach to the condition monitoring and prognosis applicable into the existing systems. These methods use the information available in the traditional electric drives – especially the information from the individual sensors in a voltage source inverter (VSI) and/or an electric motor. Condition indicators for these methods are based on application specific operating states or actions, which generates typical patterns in the signals. The condition monitoring is based on observing the deviations of these patterns between the healthy system and the system with fault propagating. The implementation strategy is described in the paper and some demonstration examples are shown as well.","PeriodicalId":6682,"journal":{"name":"2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)","volume":"70 1","pages":"870-876"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Prognosis and Health Management in electric drives applications implemented in existing systems with limited data rate\",\"authors\":\"B. Klima, Ludek Buchta, M. Doseděl, Z. Havránek, P. Blaha\",\"doi\":\"10.1109/ETFA.2019.8869520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Importance of the condition monitoring and predictive maintenance in motion systems is growing up as motion systems quantum and their complexity (number of axes, performance parameters) increases with increasing the automation of huge range of human activities and manufacturing processes. Probability of failures increases with the system complexity.Many faults and indication of their propagation in the electric drives would require additional sensors or hardware, higher bandwidth and sampling frequencies of feedback sensors, high computing power etc. for development of sophisticated methods to detect specific faults with good sensitivity, robustness and reliability under any operating condition.This paper presents an approach to the condition monitoring and prognosis applicable into the existing systems. These methods use the information available in the traditional electric drives – especially the information from the individual sensors in a voltage source inverter (VSI) and/or an electric motor. Condition indicators for these methods are based on application specific operating states or actions, which generates typical patterns in the signals. The condition monitoring is based on observing the deviations of these patterns between the healthy system and the system with fault propagating. The implementation strategy is described in the paper and some demonstration examples are shown as well.\",\"PeriodicalId\":6682,\"journal\":{\"name\":\"2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)\",\"volume\":\"70 1\",\"pages\":\"870-876\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETFA.2019.8869520\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.2019.8869520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

随着人类活动和制造过程自动化程度的提高,运动系统的量子化及其复杂性(轴数、性能参数)不断增加,状态监测和预测性维护在运动系统中的重要性也越来越大。故障的概率随着系统复杂性的增加而增加。许多故障及其在电力驱动中的传播指示将需要额外的传感器或硬件,更高的带宽和反馈传感器的采样频率,高计算能力等,以便开发复杂的方法来检测在任何操作条件下具有良好灵敏度,鲁棒性和可靠性的特定故障。本文提出了一种适用于现有系统的状态监测和预测方法。这些方法使用传统电驱动中可用的信息-特别是来自电压源逆变器(VSI)和/或电动机中的单个传感器的信息。这些方法的条件指示器基于应用程序特定的操作状态或操作,从而在信号中生成典型模式。状态监测的基础是观察这些模式在健康系统和故障传播系统之间的偏差。本文介绍了该方法的实现策略,并给出了一些实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prognosis and Health Management in electric drives applications implemented in existing systems with limited data rate
Importance of the condition monitoring and predictive maintenance in motion systems is growing up as motion systems quantum and their complexity (number of axes, performance parameters) increases with increasing the automation of huge range of human activities and manufacturing processes. Probability of failures increases with the system complexity.Many faults and indication of their propagation in the electric drives would require additional sensors or hardware, higher bandwidth and sampling frequencies of feedback sensors, high computing power etc. for development of sophisticated methods to detect specific faults with good sensitivity, robustness and reliability under any operating condition.This paper presents an approach to the condition monitoring and prognosis applicable into the existing systems. These methods use the information available in the traditional electric drives – especially the information from the individual sensors in a voltage source inverter (VSI) and/or an electric motor. Condition indicators for these methods are based on application specific operating states or actions, which generates typical patterns in the signals. The condition monitoring is based on observing the deviations of these patterns between the healthy system and the system with fault propagating. The implementation strategy is described in the paper and some demonstration examples are shown as well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An analysis of energy storage system interaction in a multi objective model predictive control based energy management in DC microgrid Latency-Based 5G RAN Slicing Descriptor to Support Deterministic Industry 4.0 Applications CAP: Context-Aware Programming for Cyber Physical Systems Multiplexing Avionics and additional flows on a QoS-aware AFDX network Ultra-Reliable Low Latency based on Retransmission and Spatial Diversity in Slowly Fading Channels with Co-channel Interference
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1