Mahshid Gharagozlou, H. Sid Kalal, A. Khanchi, S. Ghorbanian, Seyed Ebrahim Mosavi, M. Almasian, Danial Niknafs, A. Pourmatin, N. Akbari
{"title":"响应面法氯化铵沉淀法回收钒","authors":"Mahshid Gharagozlou, H. Sid Kalal, A. Khanchi, S. Ghorbanian, Seyed Ebrahim Mosavi, M. Almasian, Danial Niknafs, A. Pourmatin, N. Akbari","doi":"10.24200/amecj.v4.i04.153","DOIUrl":null,"url":null,"abstract":"In this study, an attempt was made to recover vanadium from an alkaline solution using the precipitation process. A white salt ammonium metavanadate was obtained using the ammonium chloride precipitation method. Ammonium chloride was added directly to the alkaline liquor solution and the pH was adjusted approximately between 5 and 7 to form the white salt. The parameters affecting the recovery of vanadium, including the ammonium chloride concentration, the pH and the vanadium concentration in the caustic solution, were examined. The precipitation time had no significant influence on the vanadium recovery. The concentration of vanadium in the caustic solution and the concentration of ammonium chloride used for the precipitation were inversely related. It was found that a high recovery (over 90%) can be achieved with ammonium chloride and vanadium with concentrations over 4% (w / v) or 1000 mg L-1 (in the lye solution). It has also been observed that working in the pH range of 5 to 7 results in over 90% recovery. The influence of the parameters mentioned on the recovery of impurities was examined and the optimal values determined. Ultimately, the maximum vanadium recovery (97.29%) was achieved at the optimal point obtained from the reaction surface methodology.","PeriodicalId":7797,"journal":{"name":"Analytical Methods in Environmental Chemistry Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Recovery of Vanadium by ammonium chloride precipitation method using response surface methodology\",\"authors\":\"Mahshid Gharagozlou, H. Sid Kalal, A. Khanchi, S. Ghorbanian, Seyed Ebrahim Mosavi, M. Almasian, Danial Niknafs, A. Pourmatin, N. Akbari\",\"doi\":\"10.24200/amecj.v4.i04.153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, an attempt was made to recover vanadium from an alkaline solution using the precipitation process. A white salt ammonium metavanadate was obtained using the ammonium chloride precipitation method. Ammonium chloride was added directly to the alkaline liquor solution and the pH was adjusted approximately between 5 and 7 to form the white salt. The parameters affecting the recovery of vanadium, including the ammonium chloride concentration, the pH and the vanadium concentration in the caustic solution, were examined. The precipitation time had no significant influence on the vanadium recovery. The concentration of vanadium in the caustic solution and the concentration of ammonium chloride used for the precipitation were inversely related. It was found that a high recovery (over 90%) can be achieved with ammonium chloride and vanadium with concentrations over 4% (w / v) or 1000 mg L-1 (in the lye solution). It has also been observed that working in the pH range of 5 to 7 results in over 90% recovery. The influence of the parameters mentioned on the recovery of impurities was examined and the optimal values determined. Ultimately, the maximum vanadium recovery (97.29%) was achieved at the optimal point obtained from the reaction surface methodology.\",\"PeriodicalId\":7797,\"journal\":{\"name\":\"Analytical Methods in Environmental Chemistry Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Methods in Environmental Chemistry Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24200/amecj.v4.i04.153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Methods in Environmental Chemistry Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24200/amecj.v4.i04.153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
摘要
本研究尝试用沉淀法从碱性溶液中回收钒。采用氯化铵沉淀法制备了白色偏氰酸铵盐。在碱液溶液中直接加入氯化铵,将pH值调整在5 ~ 7之间,形成白色盐。考察了氯化铵浓度、pH值和碱溶液中钒浓度对钒回收率的影响。沉淀时间对钒回收率无显著影响。碱溶液中钒的浓度与沉淀用氯化铵的浓度成反比。当氯化铵和钒浓度大于4% (w / v)或1000 mg L-1(碱液)时,回收率可达90%以上。还观察到,在pH值为5 ~ 7的范围内工作,回收率超过90%。考察了各参数对杂质回收率的影响,确定了最佳回收率。最终,在反应表面法得到的最佳点上,钒回收率达到了97.29%。
Recovery of Vanadium by ammonium chloride precipitation method using response surface methodology
In this study, an attempt was made to recover vanadium from an alkaline solution using the precipitation process. A white salt ammonium metavanadate was obtained using the ammonium chloride precipitation method. Ammonium chloride was added directly to the alkaline liquor solution and the pH was adjusted approximately between 5 and 7 to form the white salt. The parameters affecting the recovery of vanadium, including the ammonium chloride concentration, the pH and the vanadium concentration in the caustic solution, were examined. The precipitation time had no significant influence on the vanadium recovery. The concentration of vanadium in the caustic solution and the concentration of ammonium chloride used for the precipitation were inversely related. It was found that a high recovery (over 90%) can be achieved with ammonium chloride and vanadium with concentrations over 4% (w / v) or 1000 mg L-1 (in the lye solution). It has also been observed that working in the pH range of 5 to 7 results in over 90% recovery. The influence of the parameters mentioned on the recovery of impurities was examined and the optimal values determined. Ultimately, the maximum vanadium recovery (97.29%) was achieved at the optimal point obtained from the reaction surface methodology.