基于移动深度学习模型的集体防护装备状态目视检测

B. Ferreira, B. Lima, Tiago F. Vieira
{"title":"基于移动深度学习模型的集体防护装备状态目视检测","authors":"B. Ferreira, B. Lima, Tiago F. Vieira","doi":"10.5220/0009834600760083","DOIUrl":null,"url":null,"abstract":": Even though Deep Learning models are presenting increasing popularity in a variety of scenarios, there are many demands to which they can be specifically tuned to. We present a real-time, embedded system capable of performing the visual inspection of Collective Protection Equipment conditions such as fire extinguishers (presence of rust or disconnected hose), emergency lamp (disconnected energy cable) and horizontal and vertical signalization, among others. This demand was raised by a glass-manufacturing company which provides devices for optical-fiber solutions. To tackle this specific necessity, we collected and annotated a database with hundreds of in-factory images and assessed three different Deep Learning models aiming at evaluating the trade-off between performance and processing time. A real-world application was developed with potential to reduce time and costs of periodic inspections of the company’s security installations.","PeriodicalId":88612,"journal":{"name":"News. Phi Delta Epsilon","volume":"7 1","pages":"76-83"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visual Inspection of Collective Protection Equipment Conditions with Mobile Deep Learning Models\",\"authors\":\"B. Ferreira, B. Lima, Tiago F. Vieira\",\"doi\":\"10.5220/0009834600760083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Even though Deep Learning models are presenting increasing popularity in a variety of scenarios, there are many demands to which they can be specifically tuned to. We present a real-time, embedded system capable of performing the visual inspection of Collective Protection Equipment conditions such as fire extinguishers (presence of rust or disconnected hose), emergency lamp (disconnected energy cable) and horizontal and vertical signalization, among others. This demand was raised by a glass-manufacturing company which provides devices for optical-fiber solutions. To tackle this specific necessity, we collected and annotated a database with hundreds of in-factory images and assessed three different Deep Learning models aiming at evaluating the trade-off between performance and processing time. A real-world application was developed with potential to reduce time and costs of periodic inspections of the company’s security installations.\",\"PeriodicalId\":88612,\"journal\":{\"name\":\"News. Phi Delta Epsilon\",\"volume\":\"7 1\",\"pages\":\"76-83\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"News. Phi Delta Epsilon\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0009834600760083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"News. Phi Delta Epsilon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0009834600760083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

尽管深度学习模型在各种场景中越来越受欢迎,但它们可以专门针对许多需求进行调整。我们提出了一种实时嵌入式系统,能够对集体保护设备的状况进行目视检查,例如灭火器(存在生锈或断开的软管),应急灯(断开的能源电缆)以及水平和垂直信号等。这一需求是由一家为光纤解决方案提供设备的玻璃制造公司提出的。为了解决这个特定的需求,我们收集并注释了一个包含数百个工厂内图像的数据库,并评估了三种不同的深度学习模型,旨在评估性能和处理时间之间的权衡。开发了一个真实世界的应用程序,它有可能减少定期检查公司安全装置的时间和成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Visual Inspection of Collective Protection Equipment Conditions with Mobile Deep Learning Models
: Even though Deep Learning models are presenting increasing popularity in a variety of scenarios, there are many demands to which they can be specifically tuned to. We present a real-time, embedded system capable of performing the visual inspection of Collective Protection Equipment conditions such as fire extinguishers (presence of rust or disconnected hose), emergency lamp (disconnected energy cable) and horizontal and vertical signalization, among others. This demand was raised by a glass-manufacturing company which provides devices for optical-fiber solutions. To tackle this specific necessity, we collected and annotated a database with hundreds of in-factory images and assessed three different Deep Learning models aiming at evaluating the trade-off between performance and processing time. A real-world application was developed with potential to reduce time and costs of periodic inspections of the company’s security installations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GAN-Based LiDAR Intensity Simulation Improving Primate Sounds Classification using Binary Presorting for Deep Learning Towards exploring adversarial learning for anomaly detection in complex driving scenes A Study of Neural Collapse for Text Classification Using Artificial Intelligence to Reduce the Risk of Transfusion Hemolytic Reactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1