聚类验证的密度判别指标

Supphawarich Thanarattananakin, P. Padungweang, Worarat Krathu
{"title":"聚类验证的密度判别指标","authors":"Supphawarich Thanarattananakin, P. Padungweang, Worarat Krathu","doi":"10.1109/ICITEED.2019.8929981","DOIUrl":null,"url":null,"abstract":"Clustering analysis is widely applied in several domains of study. Using a suitable number of clusters is one of the most important factors to influence the performance of clustering. Several algorithms of cluster validation have been developed to find such a number. In this paper, we proposed a method for cluster validation adapted from the Discrimination Evaluation via Optic Diffraction Analysis (DEODA) algorithm to derive an appropriate number of clusters. In particular, our method uses DEODA to perform within- and between-cluster discrimination analysis in order to find the suitable number of clusters. We evaluate our method by comparing similarity score against the existing cluster validation algorithm i.e., the Silhouette index. The results show that the similarity scores derived from our method are higher than results yielded from the Silhouette index.","PeriodicalId":6598,"journal":{"name":"2019 11th International Conference on Information Technology and Electrical Engineering (ICITEE)","volume":"31 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Density Discriminant Index for Cluster Validation\",\"authors\":\"Supphawarich Thanarattananakin, P. Padungweang, Worarat Krathu\",\"doi\":\"10.1109/ICITEED.2019.8929981\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clustering analysis is widely applied in several domains of study. Using a suitable number of clusters is one of the most important factors to influence the performance of clustering. Several algorithms of cluster validation have been developed to find such a number. In this paper, we proposed a method for cluster validation adapted from the Discrimination Evaluation via Optic Diffraction Analysis (DEODA) algorithm to derive an appropriate number of clusters. In particular, our method uses DEODA to perform within- and between-cluster discrimination analysis in order to find the suitable number of clusters. We evaluate our method by comparing similarity score against the existing cluster validation algorithm i.e., the Silhouette index. The results show that the similarity scores derived from our method are higher than results yielded from the Silhouette index.\",\"PeriodicalId\":6598,\"journal\":{\"name\":\"2019 11th International Conference on Information Technology and Electrical Engineering (ICITEE)\",\"volume\":\"31 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 11th International Conference on Information Technology and Electrical Engineering (ICITEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICITEED.2019.8929981\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 11th International Conference on Information Technology and Electrical Engineering (ICITEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITEED.2019.8929981","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

聚类分析在许多研究领域得到了广泛的应用。使用合适数量的聚类是影响聚类性能的最重要因素之一。为了找到这样一个数字,已经开发了几种聚类验证算法。本文提出了一种基于光学衍射分析(DEODA)算法的聚类验证方法,以获得合适的聚类数量。特别是,我们的方法使用DEODA进行聚类内和聚类之间的判别分析,以找到合适的聚类数量。我们通过比较相似性得分与现有的聚类验证算法(即Silhouette指数)来评估我们的方法。结果表明,我们的方法得到的相似度分数高于剪影指数得到的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Density Discriminant Index for Cluster Validation
Clustering analysis is widely applied in several domains of study. Using a suitable number of clusters is one of the most important factors to influence the performance of clustering. Several algorithms of cluster validation have been developed to find such a number. In this paper, we proposed a method for cluster validation adapted from the Discrimination Evaluation via Optic Diffraction Analysis (DEODA) algorithm to derive an appropriate number of clusters. In particular, our method uses DEODA to perform within- and between-cluster discrimination analysis in order to find the suitable number of clusters. We evaluate our method by comparing similarity score against the existing cluster validation algorithm i.e., the Silhouette index. The results show that the similarity scores derived from our method are higher than results yielded from the Silhouette index.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and Simulation of Three Phase Squirrel Cage Induction Motor in Low Voltage System 48V 50Hz 3Hp for Electric Golf Cart Study on Detection Mechanism of HF Radar for Early Tsunami Detection and Comparison to Other Tsunami Sensors Research On The Impact of Knowledge Management Practice for Ogranizational Performance: Indonesian Electronic Power Company A Virtual Spring Damper Method for Formation Control of the Multi Omni-directional Robots in Cooperative Transportation Power Allocation for Group LDS-OFDM in Underlay Cognitive Radio
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1