基于动脉树一维均匀模型重建主动脉压波形可行吗?

Z. Hao
{"title":"基于动脉树一维均匀模型重建主动脉压波形可行吗?","authors":"Z. Hao","doi":"10.1115/1.4062468","DOIUrl":null,"url":null,"abstract":"\n Based on a 1D uniform model of the arterial tree, various machine-learning techniques have been explored to reconstruct aortic pressure waveform (APW) from peripheral pressure waveform (PPW). This study aims to examine the feasibility of such reconstruction. Based on a 1D uniform vibrating-string model, transfer function (TF) of PPW to APW contains four harmonics-dependent parameters: value and phase of reflection coefficient (i.e., load impedance) at periphery and transmission parameter and transmission loss in the aorta-periphery section, and they are all harmonics-dependent. Pressure waveforms and blood velocity waveforms at the ascending aorta (AA), the carotid artery (CA), and the radial artery (RA) at different ages in a database are analyzed to calculate 1) reflection coefficient at the CA and the RA as two peripheries, 2) TF for the AA-CA and AA-RA sections, and 3) transmission parameter and transmission loss in the two sections. Harmonics-dependence of the four parameters varies with aging for both sections, revealing unpracticality of any mathematical model for harmonics-dependence of load impedance. Compared with fluid-loading, arterial non-uniformity significantly affects wave transmission. Transmission loss dramatically alters reconstructed APW, relative to higher harmonics. A 1D uniform model allows accurate reconstruction of APW from PPW, with a caveat that baseline values for the four parameters at different harmonics under different cardiovascular (CV) conditions need to be established a priori. Alternatively, based on the baseline values, PPW can be directly utilized for inferring the CV conditions.","PeriodicalId":73734,"journal":{"name":"Journal of engineering and science in medical diagnostics and therapy","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Is It Feasible to Reconstruct Aortic Pressure Waveform Based On a 1d Uniform Model of the Arterial Tree?\",\"authors\":\"Z. Hao\",\"doi\":\"10.1115/1.4062468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Based on a 1D uniform model of the arterial tree, various machine-learning techniques have been explored to reconstruct aortic pressure waveform (APW) from peripheral pressure waveform (PPW). This study aims to examine the feasibility of such reconstruction. Based on a 1D uniform vibrating-string model, transfer function (TF) of PPW to APW contains four harmonics-dependent parameters: value and phase of reflection coefficient (i.e., load impedance) at periphery and transmission parameter and transmission loss in the aorta-periphery section, and they are all harmonics-dependent. Pressure waveforms and blood velocity waveforms at the ascending aorta (AA), the carotid artery (CA), and the radial artery (RA) at different ages in a database are analyzed to calculate 1) reflection coefficient at the CA and the RA as two peripheries, 2) TF for the AA-CA and AA-RA sections, and 3) transmission parameter and transmission loss in the two sections. Harmonics-dependence of the four parameters varies with aging for both sections, revealing unpracticality of any mathematical model for harmonics-dependence of load impedance. Compared with fluid-loading, arterial non-uniformity significantly affects wave transmission. Transmission loss dramatically alters reconstructed APW, relative to higher harmonics. A 1D uniform model allows accurate reconstruction of APW from PPW, with a caveat that baseline values for the four parameters at different harmonics under different cardiovascular (CV) conditions need to be established a priori. Alternatively, based on the baseline values, PPW can be directly utilized for inferring the CV conditions.\",\"PeriodicalId\":73734,\"journal\":{\"name\":\"Journal of engineering and science in medical diagnostics and therapy\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of engineering and science in medical diagnostics and therapy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4062468\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of engineering and science in medical diagnostics and therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4062468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于动脉树的一维均匀模型,研究人员探索了各种机器学习技术来从外周压力波形(PPW)重建主动脉压力波形(APW)。本研究旨在探讨这种重建的可行性。基于一维均匀振动弦模型,PPW到APW的传递函数(TF)包含四个谐波相关参数:外围反射系数(即负载阻抗)的值和相位以及主动脉-外围段的传输参数和传输损耗,它们都是谐波相关的。分析数据库中不同年龄的升主动脉(AA)、颈动脉(CA)和桡动脉(RA)的压力波形和血流速度波形,计算1)CA和RA作为两个外围的反射系数,2)AA-CA和AA-RA断面的TF, 3)两个断面的传输参数和传输损失。这四个参数的谐波依赖关系随两个部分的老化而变化,表明负载阻抗谐波依赖的任何数学模型都不实用。与流体加载相比,动脉不均匀性显著影响波的传播。相对于高次谐波,传输损耗显著地改变了重构APW。一维均匀模型可以精确地从PPW重建APW,但需要注意的是,需要先验地建立不同心血管(CV)条件下四个参数在不同谐波下的基线值。或者,基于基线值,PPW可以直接用于推断CV条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Is It Feasible to Reconstruct Aortic Pressure Waveform Based On a 1d Uniform Model of the Arterial Tree?
Based on a 1D uniform model of the arterial tree, various machine-learning techniques have been explored to reconstruct aortic pressure waveform (APW) from peripheral pressure waveform (PPW). This study aims to examine the feasibility of such reconstruction. Based on a 1D uniform vibrating-string model, transfer function (TF) of PPW to APW contains four harmonics-dependent parameters: value and phase of reflection coefficient (i.e., load impedance) at periphery and transmission parameter and transmission loss in the aorta-periphery section, and they are all harmonics-dependent. Pressure waveforms and blood velocity waveforms at the ascending aorta (AA), the carotid artery (CA), and the radial artery (RA) at different ages in a database are analyzed to calculate 1) reflection coefficient at the CA and the RA as two peripheries, 2) TF for the AA-CA and AA-RA sections, and 3) transmission parameter and transmission loss in the two sections. Harmonics-dependence of the four parameters varies with aging for both sections, revealing unpracticality of any mathematical model for harmonics-dependence of load impedance. Compared with fluid-loading, arterial non-uniformity significantly affects wave transmission. Transmission loss dramatically alters reconstructed APW, relative to higher harmonics. A 1D uniform model allows accurate reconstruction of APW from PPW, with a caveat that baseline values for the four parameters at different harmonics under different cardiovascular (CV) conditions need to be established a priori. Alternatively, based on the baseline values, PPW can be directly utilized for inferring the CV conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High-Speed Three-Dimensional-Digital Image Correlation and Schlieren Imaging Integrated With Shock Tube Loading for Investigating Dynamic Response of Human Tympanic Membrane Exposed to Blasts. Quantifying the Fascicular Changes in Recovered Achilles Tendon Patients Using Diffusion Magnetic Resonance Imaging and Tractography. Assistive Technology for Real-Time Fall Prevention during Walking: Evaluation of the Effect of an Intelligent Foot Orthosis A Simple Poc Device for Temperature Control of Multiple Reactions During Recombinase Polymerase Amplification Auxetic Structure Inspired Microneedle Arrays for Minimally Invasive Drug Delivery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1