挖掘胎儿心脏磁图数据的高危胎儿

D. Snider, Xiaowei Xu
{"title":"挖掘胎儿心脏磁图数据的高危胎儿","authors":"D. Snider, Xiaowei Xu","doi":"10.1109/BIBMW.2011.6112563","DOIUrl":null,"url":null,"abstract":"The fetal magnetocardiogram (fMCG) contains a wealth of information regarding the health of a fetus. The purpose of this study is to classify fMCG data into the following two groups: high-risk and normal. In this presentation the authors first describe how the feature vector containing both time and frequency domain attributes is built from the time-series fMCG data. Second, the classification process using support vector machine (SVM) tools to identify the high-risk fetuses is described. Experimental results from 272 data sets taken from 118 fetuses demonstrate the SVM classifier's ability to distinguish between the high-risk and normal fetuses. Artificial neural networks and decision trees are used to validate the SVM results and receiver operating characteristic curve analysis and blind tests are employed to show the strength of the model. The model currently attains a sensitivity of 0.67 and a specificity of 0.65. While this study remains a work in progress, the authors are refining the process to improve the aforementioned results.","PeriodicalId":6345,"journal":{"name":"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)","volume":"9 1","pages":"1066-1068"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mining fetal magnetocardiogram data for high-risk fetuses\",\"authors\":\"D. Snider, Xiaowei Xu\",\"doi\":\"10.1109/BIBMW.2011.6112563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fetal magnetocardiogram (fMCG) contains a wealth of information regarding the health of a fetus. The purpose of this study is to classify fMCG data into the following two groups: high-risk and normal. In this presentation the authors first describe how the feature vector containing both time and frequency domain attributes is built from the time-series fMCG data. Second, the classification process using support vector machine (SVM) tools to identify the high-risk fetuses is described. Experimental results from 272 data sets taken from 118 fetuses demonstrate the SVM classifier's ability to distinguish between the high-risk and normal fetuses. Artificial neural networks and decision trees are used to validate the SVM results and receiver operating characteristic curve analysis and blind tests are employed to show the strength of the model. The model currently attains a sensitivity of 0.67 and a specificity of 0.65. While this study remains a work in progress, the authors are refining the process to improve the aforementioned results.\",\"PeriodicalId\":6345,\"journal\":{\"name\":\"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)\",\"volume\":\"9 1\",\"pages\":\"1066-1068\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBMW.2011.6112563\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBMW.2011.6112563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

胎儿心脏磁图(fMCG)包含关于胎儿健康的丰富信息。本研究的目的是将快速消费品数据分为以下两组:高风险组和正常组。在本报告中,作者首先描述了如何从时间序列fMCG数据中构建包含时域和频域属性的特征向量。其次,描述了使用支持向量机(SVM)工具识别高危胎儿的分类过程。来自118个胎儿的272个数据集的实验结果证明了SVM分类器区分高危胎儿和正常胎儿的能力。采用人工神经网络和决策树对SVM结果进行验证,并采用接收者工作特征曲线分析和盲测试来验证模型的强度。该模型目前的灵敏度为0.67,特异性为0.65。虽然这项研究仍在进行中,但作者正在改进这一过程,以改善上述结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mining fetal magnetocardiogram data for high-risk fetuses
The fetal magnetocardiogram (fMCG) contains a wealth of information regarding the health of a fetus. The purpose of this study is to classify fMCG data into the following two groups: high-risk and normal. In this presentation the authors first describe how the feature vector containing both time and frequency domain attributes is built from the time-series fMCG data. Second, the classification process using support vector machine (SVM) tools to identify the high-risk fetuses is described. Experimental results from 272 data sets taken from 118 fetuses demonstrate the SVM classifier's ability to distinguish between the high-risk and normal fetuses. Artificial neural networks and decision trees are used to validate the SVM results and receiver operating characteristic curve analysis and blind tests are employed to show the strength of the model. The model currently attains a sensitivity of 0.67 and a specificity of 0.65. While this study remains a work in progress, the authors are refining the process to improve the aforementioned results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evolution of protein architectures inferred from phylogenomic analysis of CATH Hierarchical modeling of alternative exon usage associations with survival 3D point cloud sensors for low-cost medical in-situ visualization Bayesian Classifiers for Chemical Toxicity Prediction Normal mode analysis of protein structure dynamics based on residue contact energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1