植物类黄酮槲皮素通过凋亡机制抑制表皮生长因子诱导的前列腺癌(PC3)细胞的存活和增殖

Firdous Ahmad Bhat, G. Sharmila, S. Balakrishnan, P. Raja Singh, N. Srinivasan, J. Arunakaran
{"title":"植物类黄酮槲皮素通过凋亡机制抑制表皮生长因子诱导的前列腺癌(PC3)细胞的存活和增殖","authors":"Firdous Ahmad Bhat,&nbsp;G. Sharmila,&nbsp;S. Balakrishnan,&nbsp;P. Raja Singh,&nbsp;N. Srinivasan,&nbsp;J. Arunakaran","doi":"10.1016/j.bionut.2014.07.003","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Epidermal growth factor<span> (EGF) plays a key role in epithelial malignancies<span><span> by enhancing cancer cell proliferation, survival, invasion, and </span>metastasis<span>. The aberrant expression of epidermal growth factor receptor (EGFR) by tumors typically confers a more aggressive phenotype and is often predictive of poor prognosis. </span></span></span></span>Quercetin<span><span><span> is an anti-oxidative flavonoid widely distributed in fruits and vegetables and have attracted much attention as potential anti-carcinogens. </span>Prostate cancer is the most common cause of cancer related deaths in men. In the present study, we examined the effects of quercetin on EGF induced signaling molecules involved in proliferation, survival and </span>apoptosis in PC-3 cells. EGF-stimulated EGFR, Akt, PI3</span></span> <span>K, PDK1 and ERK1/2 protein levels were inhibited by quercetin. The inhibitory effects of quercetin on EGF induced signaling were compared with PI3</span> <span><span><span>K inhibitor (LY294002) and MAPK inhibitor (PD98059). Quercetin down-regulated EGF induced Bcl-2 expression and upregulated Bax protein levels. Caspase-3 activity was significantly increased by quercetin </span>treatment. </span>Acridine orange<span> and ethidium bromide staining showed that quercetin was able to induce apoptosis even in the presence of EGF. To conclude, the present study showed that quercetin inhibits EGF induced cell survival, proliferation and induced apoptosis in PC-3 cells.</span></span></p></div>","PeriodicalId":100182,"journal":{"name":"Biomedicine & Preventive Nutrition","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.bionut.2014.07.003","citationCount":"12","resultStr":"{\"title\":\"Epidermal growth factor-induced prostate cancer (PC3) cell survival and proliferation is inhibited by quercetin, a plant flavonoid through apoptotic machinery\",\"authors\":\"Firdous Ahmad Bhat,&nbsp;G. Sharmila,&nbsp;S. Balakrishnan,&nbsp;P. Raja Singh,&nbsp;N. Srinivasan,&nbsp;J. Arunakaran\",\"doi\":\"10.1016/j.bionut.2014.07.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Epidermal growth factor<span> (EGF) plays a key role in epithelial malignancies<span><span> by enhancing cancer cell proliferation, survival, invasion, and </span>metastasis<span>. The aberrant expression of epidermal growth factor receptor (EGFR) by tumors typically confers a more aggressive phenotype and is often predictive of poor prognosis. </span></span></span></span>Quercetin<span><span><span> is an anti-oxidative flavonoid widely distributed in fruits and vegetables and have attracted much attention as potential anti-carcinogens. </span>Prostate cancer is the most common cause of cancer related deaths in men. In the present study, we examined the effects of quercetin on EGF induced signaling molecules involved in proliferation, survival and </span>apoptosis in PC-3 cells. EGF-stimulated EGFR, Akt, PI3</span></span> <span>K, PDK1 and ERK1/2 protein levels were inhibited by quercetin. The inhibitory effects of quercetin on EGF induced signaling were compared with PI3</span> <span><span><span>K inhibitor (LY294002) and MAPK inhibitor (PD98059). Quercetin down-regulated EGF induced Bcl-2 expression and upregulated Bax protein levels. Caspase-3 activity was significantly increased by quercetin </span>treatment. </span>Acridine orange<span> and ethidium bromide staining showed that quercetin was able to induce apoptosis even in the presence of EGF. To conclude, the present study showed that quercetin inhibits EGF induced cell survival, proliferation and induced apoptosis in PC-3 cells.</span></span></p></div>\",\"PeriodicalId\":100182,\"journal\":{\"name\":\"Biomedicine & Preventive Nutrition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.bionut.2014.07.003\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedicine & Preventive Nutrition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2210523914000634\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedicine & Preventive Nutrition","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210523914000634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

表皮生长因子(EGF)通过促进上皮恶性肿瘤细胞的增殖、存活、侵袭和转移发挥关键作用。肿瘤表皮生长因子受体(EGFR)的异常表达通常赋予更具侵袭性的表型,并且通常预示着不良预后。槲皮素是一种广泛存在于水果和蔬菜中的抗氧化类黄酮,作为潜在的抗癌物质受到广泛关注。前列腺癌是男性癌症相关死亡的最常见原因。在本研究中,我们研究了槲皮素对EGF诱导的PC-3细胞增殖、存活和凋亡信号分子的影响。槲皮素抑制egf刺激的EGFR、Akt、pi3k、PDK1和ERK1/2蛋白水平。比较槲皮素与pi3k抑制剂(LY294002)和MAPK抑制剂(PD98059)对EGF诱导的信号传导的抑制作用。槲皮素下调EGF诱导的Bcl-2表达,上调Bax蛋白水平。槲皮素处理显著提高了Caspase-3活性。吖啶橙和溴化乙啶染色表明,即使在EGF存在的情况下,槲皮素也能诱导细胞凋亡。综上所述,槲皮素抑制EGF诱导PC-3细胞存活、增殖并诱导细胞凋亡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Epidermal growth factor-induced prostate cancer (PC3) cell survival and proliferation is inhibited by quercetin, a plant flavonoid through apoptotic machinery

Epidermal growth factor (EGF) plays a key role in epithelial malignancies by enhancing cancer cell proliferation, survival, invasion, and metastasis. The aberrant expression of epidermal growth factor receptor (EGFR) by tumors typically confers a more aggressive phenotype and is often predictive of poor prognosis. Quercetin is an anti-oxidative flavonoid widely distributed in fruits and vegetables and have attracted much attention as potential anti-carcinogens. Prostate cancer is the most common cause of cancer related deaths in men. In the present study, we examined the effects of quercetin on EGF induced signaling molecules involved in proliferation, survival and apoptosis in PC-3 cells. EGF-stimulated EGFR, Akt, PI3 K, PDK1 and ERK1/2 protein levels were inhibited by quercetin. The inhibitory effects of quercetin on EGF induced signaling were compared with PI3 K inhibitor (LY294002) and MAPK inhibitor (PD98059). Quercetin down-regulated EGF induced Bcl-2 expression and upregulated Bax protein levels. Caspase-3 activity was significantly increased by quercetin treatment. Acridine orange and ethidium bromide staining showed that quercetin was able to induce apoptosis even in the presence of EGF. To conclude, the present study showed that quercetin inhibits EGF induced cell survival, proliferation and induced apoptosis in PC-3 cells.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Antioxidative potential of chrysin, a flavone in streptozotocin–nicotinamide-induced diabetic rats Antidiabetic therapeutics from natural source: A systematic review Insignificant viability of the granules of probiotic and prebiotic with skimmed milk powder Protective role of Solanum trilobatum (Solanaeace) against benzo(a)pyrene-induced lung carcinogenesis in Swiss albino mice Molecular docking, isolation and biological evaluation of Rhizophora mucronata flavonoids as anti-nociceptive agents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1