{"title":"半导体上的干涉四波混频光谱","authors":"M. Wehner, J. Hetzler, M. Wegener","doi":"10.1364/qo.1997.qwb.2","DOIUrl":null,"url":null,"abstract":"In ultrafast nonlinear spectroscopy interferometric techniques can be applied both for heterodyne detection of the signal and for the excitation of the sample by phase-locked pulses, thus delivering coherent control [1] over the system. Such techniques have been predicted to be extremely sensitive with respect to the dynamics of elementary excitation [2] and have been applied to the study of non-Markovian dynamics of molecules [3, 4]. For the case of semiconductors, interferometric sensitivity has been employed for detection purposes [5] and the use of phase-locked pulses has been reported quite recently [6]. In this paper we report the observation of a novel interference phenomenon in interferometric four-wave-mixing due to contributions beyond the third order perturbational limit. An analysis of the observed interferences allows for an estimation of the importance of these higher order contributions.","PeriodicalId":44695,"journal":{"name":"Semiconductor Physics Quantum Electronics & Optoelectronics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"1997-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interferometrie Four-Wave-Mixing Spectroscopy on Semiconductors\",\"authors\":\"M. Wehner, J. Hetzler, M. Wegener\",\"doi\":\"10.1364/qo.1997.qwb.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In ultrafast nonlinear spectroscopy interferometric techniques can be applied both for heterodyne detection of the signal and for the excitation of the sample by phase-locked pulses, thus delivering coherent control [1] over the system. Such techniques have been predicted to be extremely sensitive with respect to the dynamics of elementary excitation [2] and have been applied to the study of non-Markovian dynamics of molecules [3, 4]. For the case of semiconductors, interferometric sensitivity has been employed for detection purposes [5] and the use of phase-locked pulses has been reported quite recently [6]. In this paper we report the observation of a novel interference phenomenon in interferometric four-wave-mixing due to contributions beyond the third order perturbational limit. An analysis of the observed interferences allows for an estimation of the importance of these higher order contributions.\",\"PeriodicalId\":44695,\"journal\":{\"name\":\"Semiconductor Physics Quantum Electronics & Optoelectronics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"1997-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Semiconductor Physics Quantum Electronics & Optoelectronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/qo.1997.qwb.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"QUANTUM SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semiconductor Physics Quantum Electronics & Optoelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/qo.1997.qwb.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"QUANTUM SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Interferometrie Four-Wave-Mixing Spectroscopy on Semiconductors
In ultrafast nonlinear spectroscopy interferometric techniques can be applied both for heterodyne detection of the signal and for the excitation of the sample by phase-locked pulses, thus delivering coherent control [1] over the system. Such techniques have been predicted to be extremely sensitive with respect to the dynamics of elementary excitation [2] and have been applied to the study of non-Markovian dynamics of molecules [3, 4]. For the case of semiconductors, interferometric sensitivity has been employed for detection purposes [5] and the use of phase-locked pulses has been reported quite recently [6]. In this paper we report the observation of a novel interference phenomenon in interferometric four-wave-mixing due to contributions beyond the third order perturbational limit. An analysis of the observed interferences allows for an estimation of the importance of these higher order contributions.