{"title":"基于分时原理的电流馈电ZCS高频谐振自换相电感功率传输逆变器","authors":"T. Mishima, K. Konishi, M. Nakaoka","doi":"10.1109/ECCE.2015.7309946","DOIUrl":null,"url":null,"abstract":"This paper presents a novel prototype of a timesharing frequency doubler principle-based current-fed zero current soft-switching (ZCS) high frequency resonant (HF-R) inverter for inductive power transfer (IPT) systems. The newly-proposed ZCS HF-R inverter is suitable for producing a higher frequency resonant current with switching power loss reduction by using a middle-class switching frequency insulated-gate-bipolar-power transistor (IGBT) for the IPT systems. In this paper, the performances of the newly-proposed ZCS HF-R inverter are demonstrated in experiment, after which the feasibility of the high frequency-link IPT power conversion circuit is discussed from a practical point of view.","PeriodicalId":6654,"journal":{"name":"2015 IEEE Energy Conversion Congress and Exposition (ECCE)","volume":"67 1","pages":"2027-2033"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A time-sharing principle-based current-fed ZCS high-frequency resonant self-commutated inverter for inductive power transfer\",\"authors\":\"T. Mishima, K. Konishi, M. Nakaoka\",\"doi\":\"10.1109/ECCE.2015.7309946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel prototype of a timesharing frequency doubler principle-based current-fed zero current soft-switching (ZCS) high frequency resonant (HF-R) inverter for inductive power transfer (IPT) systems. The newly-proposed ZCS HF-R inverter is suitable for producing a higher frequency resonant current with switching power loss reduction by using a middle-class switching frequency insulated-gate-bipolar-power transistor (IGBT) for the IPT systems. In this paper, the performances of the newly-proposed ZCS HF-R inverter are demonstrated in experiment, after which the feasibility of the high frequency-link IPT power conversion circuit is discussed from a practical point of view.\",\"PeriodicalId\":6654,\"journal\":{\"name\":\"2015 IEEE Energy Conversion Congress and Exposition (ECCE)\",\"volume\":\"67 1\",\"pages\":\"2027-2033\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Energy Conversion Congress and Exposition (ECCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECCE.2015.7309946\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Energy Conversion Congress and Exposition (ECCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCE.2015.7309946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A time-sharing principle-based current-fed ZCS high-frequency resonant self-commutated inverter for inductive power transfer
This paper presents a novel prototype of a timesharing frequency doubler principle-based current-fed zero current soft-switching (ZCS) high frequency resonant (HF-R) inverter for inductive power transfer (IPT) systems. The newly-proposed ZCS HF-R inverter is suitable for producing a higher frequency resonant current with switching power loss reduction by using a middle-class switching frequency insulated-gate-bipolar-power transistor (IGBT) for the IPT systems. In this paper, the performances of the newly-proposed ZCS HF-R inverter are demonstrated in experiment, after which the feasibility of the high frequency-link IPT power conversion circuit is discussed from a practical point of view.