新型生物可降解阻垢剂对碳酸钙和硫酸钙混合垢的实验室研究

U. Z. Husna, K. Elraies, J. A. Shuhili, R. Tewari
{"title":"新型生物可降解阻垢剂对碳酸钙和硫酸钙混合垢的实验室研究","authors":"U. Z. Husna, K. Elraies, J. A. Shuhili, R. Tewari","doi":"10.4043/31492-ms","DOIUrl":null,"url":null,"abstract":"\n The development of the scale layers in oil and gas operation results in production losses and equipment instability because of pipeline blockage, energy leak, corrosion acceleration and severe accidents which will impact the safety of production. Among many types of scales, calcium carbonate and calcium sulfate are considered the most frequent, prominent and terrible. On the other hand, cellulose is a class of natural polymers and also contains abundant functional groups including hydroxyl, carboxyl, and amino groups, resulting in good chelation and dispersion effects. They possess good physical and chemical properties, thermal stability, and biodegradability, abundantly available and inexpensive which make them promising compounds for the creation of \"green\" oil field reagents, including scale inhibitor. In this study, we tested two types of biodegradable polymers named hydroxyethyl cellulose (HEC) and carboxymethyl cellulose (CMC) for application as calcium carbonate and mixed carbonate and sulfate inhibitors. There are three methods carried out, starting from the thermal stability test, static bottle test, and dynamic scale loop test. The inhibition performance tests were done at temperatures of 50°C, 70°C, and 90°C. The inhibitor concentration was varied from 10, 50, 100, 1000 until 10000 ppm. The results indicate that both HEC and CMC have the potency to be used as inhibitors for these two types of scales. Both results from the static bottle test and dynamic scale loop test indicate that HEC and CMC were able to inhibit the formation of the tested scale, yet they have not been able to completely inhibit 100% of scale formation.","PeriodicalId":11081,"journal":{"name":"Day 2 Wed, March 23, 2022","volume":"69 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laboratory Study on the Use of Novel Biodegradable Scale Inhibitors Against Mixed Calcium Carbonate and Calcium Sulfate Scale\",\"authors\":\"U. Z. Husna, K. Elraies, J. A. Shuhili, R. Tewari\",\"doi\":\"10.4043/31492-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The development of the scale layers in oil and gas operation results in production losses and equipment instability because of pipeline blockage, energy leak, corrosion acceleration and severe accidents which will impact the safety of production. Among many types of scales, calcium carbonate and calcium sulfate are considered the most frequent, prominent and terrible. On the other hand, cellulose is a class of natural polymers and also contains abundant functional groups including hydroxyl, carboxyl, and amino groups, resulting in good chelation and dispersion effects. They possess good physical and chemical properties, thermal stability, and biodegradability, abundantly available and inexpensive which make them promising compounds for the creation of \\\"green\\\" oil field reagents, including scale inhibitor. In this study, we tested two types of biodegradable polymers named hydroxyethyl cellulose (HEC) and carboxymethyl cellulose (CMC) for application as calcium carbonate and mixed carbonate and sulfate inhibitors. There are three methods carried out, starting from the thermal stability test, static bottle test, and dynamic scale loop test. The inhibition performance tests were done at temperatures of 50°C, 70°C, and 90°C. The inhibitor concentration was varied from 10, 50, 100, 1000 until 10000 ppm. The results indicate that both HEC and CMC have the potency to be used as inhibitors for these two types of scales. Both results from the static bottle test and dynamic scale loop test indicate that HEC and CMC were able to inhibit the formation of the tested scale, yet they have not been able to completely inhibit 100% of scale formation.\",\"PeriodicalId\":11081,\"journal\":{\"name\":\"Day 2 Wed, March 23, 2022\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Wed, March 23, 2022\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4043/31492-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Wed, March 23, 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4043/31492-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

油气作业中结垢层的发展,造成管道堵塞、能量泄漏、腐蚀加速等严重事故,影响生产安全,造成生产损失和设备不稳定。在许多种类的鳞片中,碳酸钙和硫酸钙被认为是最常见、最突出、最可怕的。另一方面,纤维素是一类天然聚合物,含有丰富的羟基、羧基、氨基等官能团,具有良好的螯合和分散作用。它们具有良好的物理和化学性质、热稳定性和生物可降解性,储量丰富且价格低廉,这使它们成为制造“绿色”油田试剂(包括阻垢剂)的有希望的化合物。在这项研究中,我们测试了两种可生物降解的聚合物,羟乙基纤维素(HEC)和羧甲基纤维素(CMC),用于碳酸钙和混合碳酸钙和硫酸盐抑制剂。有三种方法进行,从热稳定性试验、静态瓶试验和动态尺度回路试验开始。在50°C、70°C和90°C的温度下进行缓蚀性能测试。缓蚀剂的浓度从10、50、100、1000到10000 ppm不等。结果表明,HEC和CMC对这两种类型的鳞片都有抑制作用。静态瓶试验和动态水垢循环试验的结果表明,HEC和CMC能够抑制所测水垢的形成,但不能完全抑制100%的水垢形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Laboratory Study on the Use of Novel Biodegradable Scale Inhibitors Against Mixed Calcium Carbonate and Calcium Sulfate Scale
The development of the scale layers in oil and gas operation results in production losses and equipment instability because of pipeline blockage, energy leak, corrosion acceleration and severe accidents which will impact the safety of production. Among many types of scales, calcium carbonate and calcium sulfate are considered the most frequent, prominent and terrible. On the other hand, cellulose is a class of natural polymers and also contains abundant functional groups including hydroxyl, carboxyl, and amino groups, resulting in good chelation and dispersion effects. They possess good physical and chemical properties, thermal stability, and biodegradability, abundantly available and inexpensive which make them promising compounds for the creation of "green" oil field reagents, including scale inhibitor. In this study, we tested two types of biodegradable polymers named hydroxyethyl cellulose (HEC) and carboxymethyl cellulose (CMC) for application as calcium carbonate and mixed carbonate and sulfate inhibitors. There are three methods carried out, starting from the thermal stability test, static bottle test, and dynamic scale loop test. The inhibition performance tests were done at temperatures of 50°C, 70°C, and 90°C. The inhibitor concentration was varied from 10, 50, 100, 1000 until 10000 ppm. The results indicate that both HEC and CMC have the potency to be used as inhibitors for these two types of scales. Both results from the static bottle test and dynamic scale loop test indicate that HEC and CMC were able to inhibit the formation of the tested scale, yet they have not been able to completely inhibit 100% of scale formation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluation of Utilisation a Hydraulic Workover Unit for Gravel Pack Job in Indonesia The Versatile and Tunable Metal-Organic Framework MOF for Condensate Decontamination Geological Field Characteristic of the Black Shales in the Belata Formation, Peninsular Malaysia An Intelligent Selection Model for Optimum Artificial Lift Method Using Multiple Criteria Decision-Making Approach Noise Logging Application for Well Integrity Evaluation: A Case Study in Peninsular Malaysia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1