{"title":"可重构VLSI阵列目标阵列的新上界","authors":"W. Jigang, Xiaogang Han","doi":"10.1109/EDSSC.2011.6117702","DOIUrl":null,"url":null,"abstract":"Reconfiguring a VLSI array with faults is to construct a maximum logical sub-array (target array). A large target array implies a good harvest of the corresponding reconfiguration algorithm. Thus, a tight upper bound of the harvest can be directly used to evaluate the performance of the reconfiguration algorithm. This paper presents a new approach to calculate the upper bound of the harvest for the VLSI arrays with clustered faults. Simulation results show that the upper bound is reduced up to 20% on 256 × 256 array with clustered faults.","PeriodicalId":6363,"journal":{"name":"2011 IEEE International Conference of Electron Devices and Solid-State Circuits","volume":"34 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New upper bound of target array for reconfigurable VLSI arrays\",\"authors\":\"W. Jigang, Xiaogang Han\",\"doi\":\"10.1109/EDSSC.2011.6117702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reconfiguring a VLSI array with faults is to construct a maximum logical sub-array (target array). A large target array implies a good harvest of the corresponding reconfiguration algorithm. Thus, a tight upper bound of the harvest can be directly used to evaluate the performance of the reconfiguration algorithm. This paper presents a new approach to calculate the upper bound of the harvest for the VLSI arrays with clustered faults. Simulation results show that the upper bound is reduced up to 20% on 256 × 256 array with clustered faults.\",\"PeriodicalId\":6363,\"journal\":{\"name\":\"2011 IEEE International Conference of Electron Devices and Solid-State Circuits\",\"volume\":\"34 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference of Electron Devices and Solid-State Circuits\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EDSSC.2011.6117702\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference of Electron Devices and Solid-State Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDSSC.2011.6117702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
New upper bound of target array for reconfigurable VLSI arrays
Reconfiguring a VLSI array with faults is to construct a maximum logical sub-array (target array). A large target array implies a good harvest of the corresponding reconfiguration algorithm. Thus, a tight upper bound of the harvest can be directly used to evaluate the performance of the reconfiguration algorithm. This paper presents a new approach to calculate the upper bound of the harvest for the VLSI arrays with clustered faults. Simulation results show that the upper bound is reduced up to 20% on 256 × 256 array with clustered faults.