Baloxavir marboxil、Baricitinib、Galidesivir、Nitazoxanide和Oseltamivir对SARS - CoV - 2的抑制作用的计算机实验研究

IF 1.3 Q3 CHEMISTRY, MULTIDISCIPLINARY Vietnam Journal of Chemistry Pub Date : 2022-05-17 DOI:10.1002/vjch.202100145
Thanh Q. Bui, Nguyen Thi Thanh Hai, Tran Thi Ai My, Nguyen Ho Vu Phong, N. Nhan, P. Quy, N. D. Nguyen, N. Nhung
{"title":"Baloxavir marboxil、Baricitinib、Galidesivir、Nitazoxanide和Oseltamivir对SARS - CoV - 2的抑制作用的计算机实验研究","authors":"Thanh Q. Bui, Nguyen Thi Thanh Hai, Tran Thi Ai My, Nguyen Ho Vu Phong, N. Nhan, P. Quy, N. D. Nguyen, N. Nhung","doi":"10.1002/vjch.202100145","DOIUrl":null,"url":null,"abstract":"Abstract Baloxavir marboxil (D1), Baricitinib (D2), Galidesivir (D3), Nitazoxanide (D4), and Oseltamivir (D5) are well‐known performing broad‐spectrum activity against a variety of viruses, thus holding high potentiality towards SARS‐CoV‐2. Quantum properties were examined using density functional theory (DFT). The inhibitability of the drugs towards Angiotensin‐converting enzyme 2 (ACE2) and SARS‐CoV‐2 main protease (6LU7) was evaluated by molecular docking simulation, while their bio‐compatibility was justified by physicochemical properties obtained from QSARIS‐based analysis in reference to Lipinski's rule of five. Quantum analysis suggests that the compounds are highly favourable for intermolecular interaction towards protein structures. Given ligand‐ACE2 systems, the inhibitory effectiveness follows the order D3‐ACE2 > D4‐ACE2 > D2‐ACE2 > D5‐ACE2 > D1‐ACE2; and the corresponding order for ligand‐6LU7 systems is D2‐6LU7 > D4‐6LU7 > D3‐6LU7 > D5‐6LU7 > D1‐6LU7. Galidesivir is predicted as the most effective inhibitor towards both targeted protein structures (DSaverage ‐13.1 kcal.mol‐1) and the most bio‐compatible molecule (Mass 264.9 amu; LogP ‐0.9; Polarisability 26.8 Å3). The theoretical screening suggests all drugs, especially Galidesivir (D3), promising for treatment of SARS‐CoV‐2 infection and encourages in‐related clinical trials.","PeriodicalId":23525,"journal":{"name":"Vietnam Journal of Chemistry","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2022-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An in silico study on inhibitability of Baloxavir marboxil, Baricitinib, Galidesivir, Nitazoxanide, and Oseltamivir against SARS‐CoV‐2\",\"authors\":\"Thanh Q. Bui, Nguyen Thi Thanh Hai, Tran Thi Ai My, Nguyen Ho Vu Phong, N. Nhan, P. Quy, N. D. Nguyen, N. Nhung\",\"doi\":\"10.1002/vjch.202100145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Baloxavir marboxil (D1), Baricitinib (D2), Galidesivir (D3), Nitazoxanide (D4), and Oseltamivir (D5) are well‐known performing broad‐spectrum activity against a variety of viruses, thus holding high potentiality towards SARS‐CoV‐2. Quantum properties were examined using density functional theory (DFT). The inhibitability of the drugs towards Angiotensin‐converting enzyme 2 (ACE2) and SARS‐CoV‐2 main protease (6LU7) was evaluated by molecular docking simulation, while their bio‐compatibility was justified by physicochemical properties obtained from QSARIS‐based analysis in reference to Lipinski's rule of five. Quantum analysis suggests that the compounds are highly favourable for intermolecular interaction towards protein structures. Given ligand‐ACE2 systems, the inhibitory effectiveness follows the order D3‐ACE2 > D4‐ACE2 > D2‐ACE2 > D5‐ACE2 > D1‐ACE2; and the corresponding order for ligand‐6LU7 systems is D2‐6LU7 > D4‐6LU7 > D3‐6LU7 > D5‐6LU7 > D1‐6LU7. Galidesivir is predicted as the most effective inhibitor towards both targeted protein structures (DSaverage ‐13.1 kcal.mol‐1) and the most bio‐compatible molecule (Mass 264.9 amu; LogP ‐0.9; Polarisability 26.8 Å3). The theoretical screening suggests all drugs, especially Galidesivir (D3), promising for treatment of SARS‐CoV‐2 infection and encourages in‐related clinical trials.\",\"PeriodicalId\":23525,\"journal\":{\"name\":\"Vietnam Journal of Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vietnam Journal of Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/vjch.202100145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vietnam Journal of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/vjch.202100145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

Baloxavir marboxil (D1), Baricitinib (D2), Galidesivir (D3), Nitazoxanide (D4)和Oseltamivir (D5)是众所周知的对多种病毒具有广谱活性的药物,因此对SARS - CoV - 2具有很高的潜力。利用密度泛函理论(DFT)研究了量子特性。通过分子对接模拟评估了药物对血管紧张素转换酶2 (ACE2)和SARS - CoV - 2主蛋白酶(6LU7)的抑制作用,并通过基于QSARIS的理化性质分析(参考Lipinski的五法则)验证了药物的生物相容性。量子分析表明,这些化合物对蛋白质结构的分子间相互作用非常有利。在配体- ACE2体系中,抑制效果依次为D3‐ACE2 > D4‐ACE2 > D2‐ACE2 > D5‐ACE2 > D1‐ACE2;配体- 6LU7体系的顺序为D2‐6LU7 > D4‐6LU7 > D3‐6LU7 > D5‐6LU7 > D1‐6LU7。Galidesivir被预测为最有效的靶向蛋白结构抑制剂(d平均- 13.1 kcal.mol - 1)和最具生物相容性的分子(质量264.9 amu;LogP量0.9;极化率26.8 Å3)。理论上的筛选表明,所有药物,特别是Galidesivir (D3),都有希望治疗SARS - CoV - 2感染,并鼓励相关的临床试验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An in silico study on inhibitability of Baloxavir marboxil, Baricitinib, Galidesivir, Nitazoxanide, and Oseltamivir against SARS‐CoV‐2
Abstract Baloxavir marboxil (D1), Baricitinib (D2), Galidesivir (D3), Nitazoxanide (D4), and Oseltamivir (D5) are well‐known performing broad‐spectrum activity against a variety of viruses, thus holding high potentiality towards SARS‐CoV‐2. Quantum properties were examined using density functional theory (DFT). The inhibitability of the drugs towards Angiotensin‐converting enzyme 2 (ACE2) and SARS‐CoV‐2 main protease (6LU7) was evaluated by molecular docking simulation, while their bio‐compatibility was justified by physicochemical properties obtained from QSARIS‐based analysis in reference to Lipinski's rule of five. Quantum analysis suggests that the compounds are highly favourable for intermolecular interaction towards protein structures. Given ligand‐ACE2 systems, the inhibitory effectiveness follows the order D3‐ACE2 > D4‐ACE2 > D2‐ACE2 > D5‐ACE2 > D1‐ACE2; and the corresponding order for ligand‐6LU7 systems is D2‐6LU7 > D4‐6LU7 > D3‐6LU7 > D5‐6LU7 > D1‐6LU7. Galidesivir is predicted as the most effective inhibitor towards both targeted protein structures (DSaverage ‐13.1 kcal.mol‐1) and the most bio‐compatible molecule (Mass 264.9 amu; LogP ‐0.9; Polarisability 26.8 Å3). The theoretical screening suggests all drugs, especially Galidesivir (D3), promising for treatment of SARS‐CoV‐2 infection and encourages in‐related clinical trials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Vietnam Journal of Chemistry
Vietnam Journal of Chemistry CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
1.70
自引率
0.00%
发文量
0
期刊最新文献
Pancreatic lipase inhibitory and anti‐acne activity of Piper betle: Kinetic studies, in silico docking, and chemical characterization of bioactive compounds A new cytotoxic saponin from the ethyl acetate extract of Myrsine semiserrata wall Cover Contents: Vietnam Journal of Chemistry 3/2024 Enhanced solubility and in vitro drug release of diosmetin from soy lecithin based‐diosmetin phytosome
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1