整合统计模型和可视化工具表征影响癌症的microRNA网络

James Karnia, K. Delfino, M. Villamil, G. Caetano-Anollés, S. Rodriguez-Zas
{"title":"整合统计模型和可视化工具表征影响癌症的microRNA网络","authors":"James Karnia, K. Delfino, M. Villamil, G. Caetano-Anollés, S. Rodriguez-Zas","doi":"10.1109/BIBMW.2011.6112541","DOIUrl":null,"url":null,"abstract":"Gene expression microarray experiments can be used to infer the topology of co-expression networks between genes in the immune-system pathways. Immune-system pathways are highly dimensional, including numerous gene nodes and edges connecting nodes. A bioinformatics strategy to infer and confirm gene co-expression networks was developed and applied to two major immune-system pathways. In total, 182 and 356 co-expression profiles between pairs of genes were identified in the NOD-like and B-cell receptor signaling pathways. The distinct distribution of the sign of the relationships among the pathways offered additional insights into the network.","PeriodicalId":6345,"journal":{"name":"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)","volume":"28 1","pages":"1009-1011"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integration of statistical models and visualization tools to characterize microRNA networks influencing cancer\",\"authors\":\"James Karnia, K. Delfino, M. Villamil, G. Caetano-Anollés, S. Rodriguez-Zas\",\"doi\":\"10.1109/BIBMW.2011.6112541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gene expression microarray experiments can be used to infer the topology of co-expression networks between genes in the immune-system pathways. Immune-system pathways are highly dimensional, including numerous gene nodes and edges connecting nodes. A bioinformatics strategy to infer and confirm gene co-expression networks was developed and applied to two major immune-system pathways. In total, 182 and 356 co-expression profiles between pairs of genes were identified in the NOD-like and B-cell receptor signaling pathways. The distinct distribution of the sign of the relationships among the pathways offered additional insights into the network.\",\"PeriodicalId\":6345,\"journal\":{\"name\":\"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)\",\"volume\":\"28 1\",\"pages\":\"1009-1011\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBMW.2011.6112541\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBMW.2011.6112541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基因表达微阵列实验可用于推断免疫系统通路中基因间共表达网络的拓扑结构。免疫系统通路是高度多维的,包括许多基因节点和连接节点的边缘。一种推断和确认基因共表达网络的生物信息学策略被开发并应用于两种主要的免疫系统途径。在nod样细胞和b细胞受体信号通路中,共鉴定出182和356个基因对之间的共表达谱。通路之间关系符号的独特分布提供了对网络的额外见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integration of statistical models and visualization tools to characterize microRNA networks influencing cancer
Gene expression microarray experiments can be used to infer the topology of co-expression networks between genes in the immune-system pathways. Immune-system pathways are highly dimensional, including numerous gene nodes and edges connecting nodes. A bioinformatics strategy to infer and confirm gene co-expression networks was developed and applied to two major immune-system pathways. In total, 182 and 356 co-expression profiles between pairs of genes were identified in the NOD-like and B-cell receptor signaling pathways. The distinct distribution of the sign of the relationships among the pathways offered additional insights into the network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evolution of protein architectures inferred from phylogenomic analysis of CATH Hierarchical modeling of alternative exon usage associations with survival 3D point cloud sensors for low-cost medical in-situ visualization Bayesian Classifiers for Chemical Toxicity Prediction Normal mode analysis of protein structure dynamics based on residue contact energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1