{"title":"用于复杂非线性系统辨识的自适应神经模糊网络","authors":"Ying Li, Bendu Bai, L. Jiao","doi":"10.1109/ISCAS.2000.857053","DOIUrl":null,"url":null,"abstract":"This paper presents a compound neural network model, i.e., adaptive neurofuzzy network (ANFN), which can be used for identifying the complicated nonlinear system. The proposed ANFN has a simple structure and exploits a hybrid algorithm combining supervised learning and unsupervised learning. In addition, ANFN is capable of overcoming the error of system identification due to the existence of some changing points and improving the accuracy of identification of the whole system. The effectiveness of the model and its algorithm is tested on the identification results of missile attacking area.","PeriodicalId":6422,"journal":{"name":"2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353)","volume":"40 1","pages":"164-167 vol.1"},"PeriodicalIF":0.0000,"publicationDate":"2000-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An adaptive neurofuzzy network for identification of the complicated nonlinear system\",\"authors\":\"Ying Li, Bendu Bai, L. Jiao\",\"doi\":\"10.1109/ISCAS.2000.857053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a compound neural network model, i.e., adaptive neurofuzzy network (ANFN), which can be used for identifying the complicated nonlinear system. The proposed ANFN has a simple structure and exploits a hybrid algorithm combining supervised learning and unsupervised learning. In addition, ANFN is capable of overcoming the error of system identification due to the existence of some changing points and improving the accuracy of identification of the whole system. The effectiveness of the model and its algorithm is tested on the identification results of missile attacking area.\",\"PeriodicalId\":6422,\"journal\":{\"name\":\"2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353)\",\"volume\":\"40 1\",\"pages\":\"164-167 vol.1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCAS.2000.857053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2000.857053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An adaptive neurofuzzy network for identification of the complicated nonlinear system
This paper presents a compound neural network model, i.e., adaptive neurofuzzy network (ANFN), which can be used for identifying the complicated nonlinear system. The proposed ANFN has a simple structure and exploits a hybrid algorithm combining supervised learning and unsupervised learning. In addition, ANFN is capable of overcoming the error of system identification due to the existence of some changing points and improving the accuracy of identification of the whole system. The effectiveness of the model and its algorithm is tested on the identification results of missile attacking area.