M. Meraghni, T. Lanez, E. Lanez, L. Bechki, Ali Kennoufa
{"title":"中四苯基卟啉衍生物在酸性溶液中对低碳钢缓蚀的实验与理论研究","authors":"M. Meraghni, T. Lanez, E. Lanez, L. Bechki, Ali Kennoufa","doi":"10.5599/jese.1400","DOIUrl":null,"url":null,"abstract":"The inhibition effect of meso-tetraphenyl-porphyrin (TPPH2), meso-tetra4-methophenyl-porphyrin TPPH2(p-Me), and meso-tetra4-actophenyl-porphyrin (TAcPPH2) on the corrosion of XC52 mild steel in aerated 0.5 M aqueous sulfuric acid solution was studied by potentiodynamic polarization experiments and quantum chemical calculations. Results from potentiodynamic polarization showed that inhibition efficiency of three compounds increased upon increasing of the inhibitor concentration and they are acting as mixed type inhibitors, having dominant anodic reactions. Adsorption of all compounds follows the Langmuir adsorption isotherm with moderate values of free energy of adsorption. Quantum chemical calculation using DFT/B3LYP method confirmed a strong bond between meso-tetraphenyl-porphyrins and mild steel surface. The inhibition mechanism was also determined by the potential of zero charge (PZC) measurement at the metal/solution interface.","PeriodicalId":15660,"journal":{"name":"Journal of Electrochemical Science and Engineering","volume":"11 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2022-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and theoretical study on corrosion inhibition of mild steel by meso-tetraphenyl-porphyrin derivatives in acid solution\",\"authors\":\"M. Meraghni, T. Lanez, E. Lanez, L. Bechki, Ali Kennoufa\",\"doi\":\"10.5599/jese.1400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The inhibition effect of meso-tetraphenyl-porphyrin (TPPH2), meso-tetra4-methophenyl-porphyrin TPPH2(p-Me), and meso-tetra4-actophenyl-porphyrin (TAcPPH2) on the corrosion of XC52 mild steel in aerated 0.5 M aqueous sulfuric acid solution was studied by potentiodynamic polarization experiments and quantum chemical calculations. Results from potentiodynamic polarization showed that inhibition efficiency of three compounds increased upon increasing of the inhibitor concentration and they are acting as mixed type inhibitors, having dominant anodic reactions. Adsorption of all compounds follows the Langmuir adsorption isotherm with moderate values of free energy of adsorption. Quantum chemical calculation using DFT/B3LYP method confirmed a strong bond between meso-tetraphenyl-porphyrins and mild steel surface. The inhibition mechanism was also determined by the potential of zero charge (PZC) measurement at the metal/solution interface.\",\"PeriodicalId\":15660,\"journal\":{\"name\":\"Journal of Electrochemical Science and Engineering\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electrochemical Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5599/jese.1400\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrochemical Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5599/jese.1400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Experimental and theoretical study on corrosion inhibition of mild steel by meso-tetraphenyl-porphyrin derivatives in acid solution
The inhibition effect of meso-tetraphenyl-porphyrin (TPPH2), meso-tetra4-methophenyl-porphyrin TPPH2(p-Me), and meso-tetra4-actophenyl-porphyrin (TAcPPH2) on the corrosion of XC52 mild steel in aerated 0.5 M aqueous sulfuric acid solution was studied by potentiodynamic polarization experiments and quantum chemical calculations. Results from potentiodynamic polarization showed that inhibition efficiency of three compounds increased upon increasing of the inhibitor concentration and they are acting as mixed type inhibitors, having dominant anodic reactions. Adsorption of all compounds follows the Langmuir adsorption isotherm with moderate values of free energy of adsorption. Quantum chemical calculation using DFT/B3LYP method confirmed a strong bond between meso-tetraphenyl-porphyrins and mild steel surface. The inhibition mechanism was also determined by the potential of zero charge (PZC) measurement at the metal/solution interface.