Sandro Cavallari, V. Zheng, Hongyun Cai, K. Chang, E. Cambria
{"title":"用社区检测和图上的节点嵌入学习社区嵌入","authors":"Sandro Cavallari, V. Zheng, Hongyun Cai, K. Chang, E. Cambria","doi":"10.1145/3132847.3132925","DOIUrl":null,"url":null,"abstract":"In this paper, we study an important yet largely under-explored setting of graph embedding, i.e., embedding communities instead of each individual nodes. We find that community embedding is not only useful for community-level applications such as graph visualization, but also beneficial to both community detection and node classification. To learn such embedding, our insight hinges upon a closed loop among community embedding, community detection and node embedding. On the one hand, node embedding can help improve community detection, which outputs good communities for fitting better community embedding. On the other hand, community embedding can be used to optimize the node embedding by introducing a community-aware high-order proximity. Guided by this insight, we propose a novel community embedding framework that jointly solves the three tasks together. We evaluate such a framework on multiple real-world datasets, and show that it improves graph visualization and outperforms state-of-the-art baselines in various application tasks, e.g., community detection and node classification.","PeriodicalId":20449,"journal":{"name":"Proceedings of the 2017 ACM on Conference on Information and Knowledge Management","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"331","resultStr":"{\"title\":\"Learning Community Embedding with Community Detection and Node Embedding on Graphs\",\"authors\":\"Sandro Cavallari, V. Zheng, Hongyun Cai, K. Chang, E. Cambria\",\"doi\":\"10.1145/3132847.3132925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study an important yet largely under-explored setting of graph embedding, i.e., embedding communities instead of each individual nodes. We find that community embedding is not only useful for community-level applications such as graph visualization, but also beneficial to both community detection and node classification. To learn such embedding, our insight hinges upon a closed loop among community embedding, community detection and node embedding. On the one hand, node embedding can help improve community detection, which outputs good communities for fitting better community embedding. On the other hand, community embedding can be used to optimize the node embedding by introducing a community-aware high-order proximity. Guided by this insight, we propose a novel community embedding framework that jointly solves the three tasks together. We evaluate such a framework on multiple real-world datasets, and show that it improves graph visualization and outperforms state-of-the-art baselines in various application tasks, e.g., community detection and node classification.\",\"PeriodicalId\":20449,\"journal\":{\"name\":\"Proceedings of the 2017 ACM on Conference on Information and Knowledge Management\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"331\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 ACM on Conference on Information and Knowledge Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3132847.3132925\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM on Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3132847.3132925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Learning Community Embedding with Community Detection and Node Embedding on Graphs
In this paper, we study an important yet largely under-explored setting of graph embedding, i.e., embedding communities instead of each individual nodes. We find that community embedding is not only useful for community-level applications such as graph visualization, but also beneficial to both community detection and node classification. To learn such embedding, our insight hinges upon a closed loop among community embedding, community detection and node embedding. On the one hand, node embedding can help improve community detection, which outputs good communities for fitting better community embedding. On the other hand, community embedding can be used to optimize the node embedding by introducing a community-aware high-order proximity. Guided by this insight, we propose a novel community embedding framework that jointly solves the three tasks together. We evaluate such a framework on multiple real-world datasets, and show that it improves graph visualization and outperforms state-of-the-art baselines in various application tasks, e.g., community detection and node classification.