三栅极纳米线晶体管迁移率预测的尺度感知TCAD参数提取方法

C. Medina-Bailón, T. Dutta, F. Klüpfel, S. Barraud, V. Georgiev, J. Lorenz, A. Asenov
{"title":"三栅极纳米线晶体管迁移率预测的尺度感知TCAD参数提取方法","authors":"C. Medina-Bailón, T. Dutta, F. Klüpfel, S. Barraud, V. Georgiev, J. Lorenz, A. Asenov","doi":"10.1109/SISPAD.2019.8870556","DOIUrl":null,"url":null,"abstract":"In the simulation framework for the study of aggressively scaled CMOS transistors, it is mandatory to capture the dependence of the model parameters on the physical structure of the devices in order to perform predictive device simulations. TCAD models typically have tunable parameters to characterize physical phenomena that ultimately determine different measurable electrical quantities. In this work, we extract the density gradient quantum correction parameters and Monte Carlo scattering parameters in order to fit the C-V characteristics and the low field mobility to experimental data in the case of Tri-gate nanowire transistors, which are of high importance for the semiconductor industry. Once the relevant parameters are calibrated, we have obtained a good agreement between the experimentally measured mobility and the predictions from the Monte Carlo module of the Synopsys TCAD tool Garand.","PeriodicalId":6755,"journal":{"name":"2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"6 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scaling-aware TCAD Parameter Extraction Methodology for Mobility Prediction in Tri-gate Nanowire Transistors\",\"authors\":\"C. Medina-Bailón, T. Dutta, F. Klüpfel, S. Barraud, V. Georgiev, J. Lorenz, A. Asenov\",\"doi\":\"10.1109/SISPAD.2019.8870556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the simulation framework for the study of aggressively scaled CMOS transistors, it is mandatory to capture the dependence of the model parameters on the physical structure of the devices in order to perform predictive device simulations. TCAD models typically have tunable parameters to characterize physical phenomena that ultimately determine different measurable electrical quantities. In this work, we extract the density gradient quantum correction parameters and Monte Carlo scattering parameters in order to fit the C-V characteristics and the low field mobility to experimental data in the case of Tri-gate nanowire transistors, which are of high importance for the semiconductor industry. Once the relevant parameters are calibrated, we have obtained a good agreement between the experimentally measured mobility and the predictions from the Monte Carlo module of the Synopsys TCAD tool Garand.\",\"PeriodicalId\":6755,\"journal\":{\"name\":\"2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)\",\"volume\":\"6 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SISPAD.2019.8870556\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISPAD.2019.8870556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在研究大规模缩放CMOS晶体管的仿真框架中,必须捕获模型参数对器件物理结构的依赖性,以便执行预测性器件仿真。TCAD模型通常具有可调参数,以表征最终确定不同可测量电量的物理现象。在这项工作中,我们提取了密度梯度量子校正参数和蒙特卡罗散射参数,以便将三栅极纳米线晶体管的C-V特性和低场迁移率拟合到实验数据中,这对半导体工业具有重要意义。一旦校正了相关参数,我们就得到了实验测量的迁移率与从Synopsys TCAD工具Garand的蒙特卡罗模块预测的迁移率之间的良好一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Scaling-aware TCAD Parameter Extraction Methodology for Mobility Prediction in Tri-gate Nanowire Transistors
In the simulation framework for the study of aggressively scaled CMOS transistors, it is mandatory to capture the dependence of the model parameters on the physical structure of the devices in order to perform predictive device simulations. TCAD models typically have tunable parameters to characterize physical phenomena that ultimately determine different measurable electrical quantities. In this work, we extract the density gradient quantum correction parameters and Monte Carlo scattering parameters in order to fit the C-V characteristics and the low field mobility to experimental data in the case of Tri-gate nanowire transistors, which are of high importance for the semiconductor industry. Once the relevant parameters are calibrated, we have obtained a good agreement between the experimentally measured mobility and the predictions from the Monte Carlo module of the Synopsys TCAD tool Garand.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of Stacking Faults on the Thermoelectric Figure of Merit of Si Nanowires Effect of Trap on Carrier Transport in InAs FET with Al2 O3 Oxide: DFT-based NEGF simulations Defect creation and Diffusion under electric fields from first-principles: the prototypical case of silicon dioxide Quantum Transport Simulations of the Zero Temperature Coefficient in Gate-all-around Nanowire pFETs Electronic and structural properties of interstitial titanium in crystalline silicon from first-principles simulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1