脑肿瘤检测:两种新方法

DongHyun Kim
{"title":"脑肿瘤检测:两种新方法","authors":"DongHyun Kim","doi":"10.20944/preprints202008.0641.v1","DOIUrl":null,"url":null,"abstract":"In this paper, we propose 2 novel methods for brain tumor detection in MRI images. In the first proposed approach, we build upon prior research on ensemble methods by testing the concatenation of pre-trained models: features extracted via transfer learning are merged and segmented by classification algorithms or a stacked ensemble of those algorithms. In the second approach, we expand upon prior studies on convolutional neural networks: a convolutional neural network involving a specific module of layers is used for classification. The first approach achieved accuracy scores of 0.98 and the second approach achieved a score of 0.863, outperforming a benchmark VGG-16 model. Considerations to granular computing and circuit complexity theory are given in the paper as well.","PeriodicalId":23650,"journal":{"name":"viXra","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Brain Tumor Detection: 2 Novel Approaches\",\"authors\":\"DongHyun Kim\",\"doi\":\"10.20944/preprints202008.0641.v1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose 2 novel methods for brain tumor detection in MRI images. In the first proposed approach, we build upon prior research on ensemble methods by testing the concatenation of pre-trained models: features extracted via transfer learning are merged and segmented by classification algorithms or a stacked ensemble of those algorithms. In the second approach, we expand upon prior studies on convolutional neural networks: a convolutional neural network involving a specific module of layers is used for classification. The first approach achieved accuracy scores of 0.98 and the second approach achieved a score of 0.863, outperforming a benchmark VGG-16 model. Considerations to granular computing and circuit complexity theory are given in the paper as well.\",\"PeriodicalId\":23650,\"journal\":{\"name\":\"viXra\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"viXra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20944/preprints202008.0641.v1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"viXra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20944/preprints202008.0641.v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了两种新的脑肿瘤MRI图像检测方法。在第一种提出的方法中,我们通过测试预训练模型的连接来建立先前对集成方法的研究:通过迁移学习提取的特征通过分类算法或这些算法的堆叠集成进行合并和分割。在第二种方法中,我们扩展了先前对卷积神经网络的研究:使用涉及特定层模块的卷积神经网络进行分类。第一种方法的准确率得分为0.98,第二种方法的准确率得分为0.863,优于基准VGG-16模型。文中还考虑了颗粒计算和电路复杂性理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Brain Tumor Detection: 2 Novel Approaches
In this paper, we propose 2 novel methods for brain tumor detection in MRI images. In the first proposed approach, we build upon prior research on ensemble methods by testing the concatenation of pre-trained models: features extracted via transfer learning are merged and segmented by classification algorithms or a stacked ensemble of those algorithms. In the second approach, we expand upon prior studies on convolutional neural networks: a convolutional neural network involving a specific module of layers is used for classification. The first approach achieved accuracy scores of 0.98 and the second approach achieved a score of 0.863, outperforming a benchmark VGG-16 model. Considerations to granular computing and circuit complexity theory are given in the paper as well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Relation of Accelerations in Two Inertial Frames in Special Relativity Theory Ultra-High Sensitivity MEMS Pressure Sensor Utilizing Bipolar Junction Transistor for -1…+1 kPa Investigation of High Sensitivity Piezoresistive Pressure Sensors for -0.5…+0.5 kPa Modeling of sensitive element for pressure sensor based on bipolar piezotransistor Four Spacetime Dimensions from Multifractal Geometry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1