组合软宏的参数化RTL功率模型

A. Bogliolo, Roberto Corgnati, E. Macii, M. Poncino
{"title":"组合软宏的参数化RTL功率模型","authors":"A. Bogliolo, Roberto Corgnati, E. Macii, M. Poncino","doi":"10.1109/ICCAD.1999.810663","DOIUrl":null,"url":null,"abstract":"We propose a new RTL power macromodel that is suitable for re-configurable, synthesizable soft-macros. The model is parameterized with respect to the input data size (i.e., bit-width), and can be automatically scaled with respect to different technology libraries and/or synthesis options. Scalability is obtained through a single additional characterization run, and does not require the disclosure of any intellectual property. The model is derived from empirical analysis of the sensitivity of power on input statistics, input data size and technology. The experiments prove that, with limited approximation, it is possible to de-couple the effects on power of these three factors. The proposed solution is innovative, since no previous macromodel supports automatic technology scaling, and yields estimation errors within 15%.","PeriodicalId":6414,"journal":{"name":"1999 IEEE/ACM International Conference on Computer-Aided Design. Digest of Technical Papers (Cat. No.99CH37051)","volume":"32 1","pages":"284-287"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Parameterized RTL power models for combinational soft macros\",\"authors\":\"A. Bogliolo, Roberto Corgnati, E. Macii, M. Poncino\",\"doi\":\"10.1109/ICCAD.1999.810663\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new RTL power macromodel that is suitable for re-configurable, synthesizable soft-macros. The model is parameterized with respect to the input data size (i.e., bit-width), and can be automatically scaled with respect to different technology libraries and/or synthesis options. Scalability is obtained through a single additional characterization run, and does not require the disclosure of any intellectual property. The model is derived from empirical analysis of the sensitivity of power on input statistics, input data size and technology. The experiments prove that, with limited approximation, it is possible to de-couple the effects on power of these three factors. The proposed solution is innovative, since no previous macromodel supports automatic technology scaling, and yields estimation errors within 15%.\",\"PeriodicalId\":6414,\"journal\":{\"name\":\"1999 IEEE/ACM International Conference on Computer-Aided Design. Digest of Technical Papers (Cat. No.99CH37051)\",\"volume\":\"32 1\",\"pages\":\"284-287\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1999 IEEE/ACM International Conference on Computer-Aided Design. Digest of Technical Papers (Cat. No.99CH37051)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAD.1999.810663\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1999 IEEE/ACM International Conference on Computer-Aided Design. Digest of Technical Papers (Cat. No.99CH37051)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.1999.810663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

我们提出了一种新的RTL功率宏模型,它适用于可重构、可合成的软宏。该模型是根据输入数据大小(即位宽度)进行参数化的,并且可以根据不同的技术库和/或合成选项自动缩放。可伸缩性是通过一次额外的特性测试获得的,并且不需要披露任何知识产权。该模型是通过实证分析电力对输入统计、输入数据大小和技术的敏感性而得出的。实验证明,在有限近似下,这三个因素对功率的影响是可以分离的。提出的解决方案具有创新性,因为以前的宏模型都不支持自动技术缩放,并且估计误差在15%以内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parameterized RTL power models for combinational soft macros
We propose a new RTL power macromodel that is suitable for re-configurable, synthesizable soft-macros. The model is parameterized with respect to the input data size (i.e., bit-width), and can be automatically scaled with respect to different technology libraries and/or synthesis options. Scalability is obtained through a single additional characterization run, and does not require the disclosure of any intellectual property. The model is derived from empirical analysis of the sensitivity of power on input statistics, input data size and technology. The experiments prove that, with limited approximation, it is possible to de-couple the effects on power of these three factors. The proposed solution is innovative, since no previous macromodel supports automatic technology scaling, and yields estimation errors within 15%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Least fixpoint approximations for reachability analysis Performance optimization using separator sets A scalable substrate noise coupling model for mixed-signal ICs JMTP: an architecture for exploiting concurrency in embedded Java applications with real-time considerations Electromagnetic parasitic extraction via a multipole method with hierarchical refinement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1