无论你在哪里:目标运动下多视角头部姿势分类的灵活图形引导多任务学习

Yan Yan, E. Ricci, Subramanian Ramanathan, O. Lanz, N. Sebe
{"title":"无论你在哪里:目标运动下多视角头部姿势分类的灵活图形引导多任务学习","authors":"Yan Yan, E. Ricci, Subramanian Ramanathan, O. Lanz, N. Sebe","doi":"10.1109/ICCV.2013.150","DOIUrl":null,"url":null,"abstract":"We propose a novel Multi-Task Learning framework (FEGA-MTL) for classifying the head pose of a person who moves freely in an environment monitored by multiple, large field-of-view surveillance cameras. As the target (person) moves, distortions in facial appearance owing to camera perspective and scale severely impede performance of traditional head pose classification methods. FEGA-MTL operates on a dense uniform spatial grid and learns appearance relationships across partitions as well as partition-specific appearance variations for a given head pose to build region-specific classifiers. Guided by two graphs which a-priori model appearance similarity among (i) grid partitions based on camera geometry and (ii) head pose classes, the learner efficiently clusters appearance wise related grid partitions to derive the optimal partitioning. For pose classification, upon determining the target's position using a person tracker, the appropriate region specific classifier is invoked. Experiments confirm that FEGA-MTL achieves state-of-the-art classification with few training data.","PeriodicalId":6351,"journal":{"name":"2013 IEEE International Conference on Computer Vision","volume":"57 1","pages":"1177-1184"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"118","resultStr":"{\"title\":\"No Matter Where You Are: Flexible Graph-Guided Multi-task Learning for Multi-view Head Pose Classification under Target Motion\",\"authors\":\"Yan Yan, E. Ricci, Subramanian Ramanathan, O. Lanz, N. Sebe\",\"doi\":\"10.1109/ICCV.2013.150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel Multi-Task Learning framework (FEGA-MTL) for classifying the head pose of a person who moves freely in an environment monitored by multiple, large field-of-view surveillance cameras. As the target (person) moves, distortions in facial appearance owing to camera perspective and scale severely impede performance of traditional head pose classification methods. FEGA-MTL operates on a dense uniform spatial grid and learns appearance relationships across partitions as well as partition-specific appearance variations for a given head pose to build region-specific classifiers. Guided by two graphs which a-priori model appearance similarity among (i) grid partitions based on camera geometry and (ii) head pose classes, the learner efficiently clusters appearance wise related grid partitions to derive the optimal partitioning. For pose classification, upon determining the target's position using a person tracker, the appropriate region specific classifier is invoked. Experiments confirm that FEGA-MTL achieves state-of-the-art classification with few training data.\",\"PeriodicalId\":6351,\"journal\":{\"name\":\"2013 IEEE International Conference on Computer Vision\",\"volume\":\"57 1\",\"pages\":\"1177-1184\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"118\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2013.150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2013.150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 118

摘要

我们提出了一种新的多任务学习框架(FEGA-MTL),用于对在多个大视场监控摄像机监控的环境中自由移动的人的头部姿势进行分类。随着目标(人)的移动,由于摄像机视角和比例的影响,人脸的畸变严重影响了传统的头部姿势分类方法的性能。FEGA-MTL在密集的均匀空间网格上运行,并学习跨分区的外观关系以及给定头部姿势的分区特定外观变化,以构建特定区域的分类器。在(i)基于相机几何形状的网格分区和(ii)头部姿势类别的网格分区之间先验建模外观相似性的两个图的指导下,学习器有效地对外观相关的网格分区进行聚类,以获得最优分区。对于姿态分类,在使用人跟踪器确定目标位置后,调用适当的特定区域分类器。实验证明,FEGA-MTL在训练数据较少的情况下实现了最先进的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
No Matter Where You Are: Flexible Graph-Guided Multi-task Learning for Multi-view Head Pose Classification under Target Motion
We propose a novel Multi-Task Learning framework (FEGA-MTL) for classifying the head pose of a person who moves freely in an environment monitored by multiple, large field-of-view surveillance cameras. As the target (person) moves, distortions in facial appearance owing to camera perspective and scale severely impede performance of traditional head pose classification methods. FEGA-MTL operates on a dense uniform spatial grid and learns appearance relationships across partitions as well as partition-specific appearance variations for a given head pose to build region-specific classifiers. Guided by two graphs which a-priori model appearance similarity among (i) grid partitions based on camera geometry and (ii) head pose classes, the learner efficiently clusters appearance wise related grid partitions to derive the optimal partitioning. For pose classification, upon determining the target's position using a person tracker, the appropriate region specific classifier is invoked. Experiments confirm that FEGA-MTL achieves state-of-the-art classification with few training data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PixelTrack: A Fast Adaptive Algorithm for Tracking Non-rigid Objects A General Dense Image Matching Framework Combining Direct and Feature-Based Costs Latent Space Sparse Subspace Clustering Non-convex P-Norm Projection for Robust Sparsity Hierarchical Joint Max-Margin Learning of Mid and Top Level Representations for Visual Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1