{"title":"引力决定费米子世代的数量:3","authors":"Stephane H Maes","doi":"10.31219/osf.io/h7x2m","DOIUrl":null,"url":null,"abstract":"In a multi-fold universe, gravity emerges from Entanglement through the multi-fold mechanisms. As a result, gravity-like effects appear in between entangled particles that they be real or virtual. Long range, massless gravity results from entanglement of massless virtual particles. Entanglement of massive virtual particles leads to massive gravity contributions at very smalls scales. Multi-folds mechanisms also result into a spacetime that is discrete, with a random walk fractal structure and non-commutative geometry that is Lorentz invariant and where spacetime nodes and particles can be modeled with microscopic black holes. All these recover General relativity at large scales and semi-classical model remain valid till smaller scale than usually expected. Gravity can therefore be added to the Standard Model. This can contribute to resolving several open issues with the Standard Model. It has always been intriguing to explain why there seems to be only 3 generations of Fermions, for each family, including neutrinos. In this paper, we show that there are only 3 regimes defined in the Standard Model Lagrangian complemented with gravity, when it comes to the contribution of fermion masses interacting with Higgs bosons. As a result, differentiations of mass implies only 3 generations. It is another surprising result, from adding non-negligible gravity to the Standard model. While shown in the context of a multi-fold universe, the result can be extended to any model where gravity is not negligible at small scales.","PeriodicalId":23650,"journal":{"name":"viXra","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Gravity Dictates the Number of Fermion Generations: 3\",\"authors\":\"Stephane H Maes\",\"doi\":\"10.31219/osf.io/h7x2m\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a multi-fold universe, gravity emerges from Entanglement through the multi-fold mechanisms. As a result, gravity-like effects appear in between entangled particles that they be real or virtual. Long range, massless gravity results from entanglement of massless virtual particles. Entanglement of massive virtual particles leads to massive gravity contributions at very smalls scales. Multi-folds mechanisms also result into a spacetime that is discrete, with a random walk fractal structure and non-commutative geometry that is Lorentz invariant and where spacetime nodes and particles can be modeled with microscopic black holes. All these recover General relativity at large scales and semi-classical model remain valid till smaller scale than usually expected. Gravity can therefore be added to the Standard Model. This can contribute to resolving several open issues with the Standard Model. It has always been intriguing to explain why there seems to be only 3 generations of Fermions, for each family, including neutrinos. In this paper, we show that there are only 3 regimes defined in the Standard Model Lagrangian complemented with gravity, when it comes to the contribution of fermion masses interacting with Higgs bosons. As a result, differentiations of mass implies only 3 generations. It is another surprising result, from adding non-negligible gravity to the Standard model. While shown in the context of a multi-fold universe, the result can be extended to any model where gravity is not negligible at small scales.\",\"PeriodicalId\":23650,\"journal\":{\"name\":\"viXra\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"viXra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31219/osf.io/h7x2m\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"viXra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31219/osf.io/h7x2m","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Gravity Dictates the Number of Fermion Generations: 3
In a multi-fold universe, gravity emerges from Entanglement through the multi-fold mechanisms. As a result, gravity-like effects appear in between entangled particles that they be real or virtual. Long range, massless gravity results from entanglement of massless virtual particles. Entanglement of massive virtual particles leads to massive gravity contributions at very smalls scales. Multi-folds mechanisms also result into a spacetime that is discrete, with a random walk fractal structure and non-commutative geometry that is Lorentz invariant and where spacetime nodes and particles can be modeled with microscopic black holes. All these recover General relativity at large scales and semi-classical model remain valid till smaller scale than usually expected. Gravity can therefore be added to the Standard Model. This can contribute to resolving several open issues with the Standard Model. It has always been intriguing to explain why there seems to be only 3 generations of Fermions, for each family, including neutrinos. In this paper, we show that there are only 3 regimes defined in the Standard Model Lagrangian complemented with gravity, when it comes to the contribution of fermion masses interacting with Higgs bosons. As a result, differentiations of mass implies only 3 generations. It is another surprising result, from adding non-negligible gravity to the Standard model. While shown in the context of a multi-fold universe, the result can be extended to any model where gravity is not negligible at small scales.