纳米级器件的能源效率和热管理

A. Liao, Z. Ong, A. Serov, F. Xiong, E. Pop
{"title":"纳米级器件的能源效率和热管理","authors":"A. Liao, Z. Ong, A. Serov, F. Xiong, E. Pop","doi":"10.1109/SNW.2012.6243317","DOIUrl":null,"url":null,"abstract":"Power consumption and thermal management are significant challenges in electronics, from mobile devices to data centers. A fundamental examination of such aspects could lead to orders of magnitude improvements in energy efficiency. We present recent highlights from our work examining dissipation in nanoscale devices, at contacts, interfaces, and in novel materials. Advances include the use of high-thermal conductivity materials (graphene), low-power data storage (based on phase change rather than charge), and thermoelectric effects for highly localized cooling. Results suggest much room to improve power dissipation in nanoscale electronics, towards fundamental limits, through the co-design of geometry and materials.","PeriodicalId":6402,"journal":{"name":"2012 IEEE Silicon Nanoelectronics Workshop (SNW)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Energy-efficiency and thermal management in nanoscale devices\",\"authors\":\"A. Liao, Z. Ong, A. Serov, F. Xiong, E. Pop\",\"doi\":\"10.1109/SNW.2012.6243317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Power consumption and thermal management are significant challenges in electronics, from mobile devices to data centers. A fundamental examination of such aspects could lead to orders of magnitude improvements in energy efficiency. We present recent highlights from our work examining dissipation in nanoscale devices, at contacts, interfaces, and in novel materials. Advances include the use of high-thermal conductivity materials (graphene), low-power data storage (based on phase change rather than charge), and thermoelectric effects for highly localized cooling. Results suggest much room to improve power dissipation in nanoscale electronics, towards fundamental limits, through the co-design of geometry and materials.\",\"PeriodicalId\":6402,\"journal\":{\"name\":\"2012 IEEE Silicon Nanoelectronics Workshop (SNW)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Silicon Nanoelectronics Workshop (SNW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SNW.2012.6243317\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Silicon Nanoelectronics Workshop (SNW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SNW.2012.6243317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

从移动设备到数据中心,功耗和热管理是电子领域的重大挑战。对这些方面进行根本性的检查,可以使能源效率得到数量级的提高。我们介绍了我们最近在纳米器件、接触、界面和新材料中研究耗散的重点工作。进步包括使用高导热材料(石墨烯),低功耗数据存储(基于相变而不是电荷),以及用于高度局部冷却的热电效应。结果表明,通过几何和材料的共同设计,纳米级电子学的功耗有很大的提高空间,可以达到基本的极限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Energy-efficiency and thermal management in nanoscale devices
Power consumption and thermal management are significant challenges in electronics, from mobile devices to data centers. A fundamental examination of such aspects could lead to orders of magnitude improvements in energy efficiency. We present recent highlights from our work examining dissipation in nanoscale devices, at contacts, interfaces, and in novel materials. Advances include the use of high-thermal conductivity materials (graphene), low-power data storage (based on phase change rather than charge), and thermoelectric effects for highly localized cooling. Results suggest much room to improve power dissipation in nanoscale electronics, towards fundamental limits, through the co-design of geometry and materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Statistical variability study of a 10nm gate length SOI FinFET device A novel gate-all-around ultra-thin p-channel poly-Si TFT functioning as transistor and flash memory with silicon nanocrystals Quantum transport property in FETs with deterministically implanted single-arsenic ions using single-ion implantation Graphene fillers for ultra-efficient thermal interface materials Reduced drain current variability in fully depleted silicon-on-thin-BOX (SOTB) MOSFETs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1