先进的井控降低了井喷风险

T. Nedwed, Doug Mitchell
{"title":"先进的井控降低了井喷风险","authors":"T. Nedwed, Doug Mitchell","doi":"10.7901/2169-3358-2021.1.687221","DOIUrl":null,"url":null,"abstract":"\n There are still concerns about well control especially for operations in sensitive environments. Currently the final barrier while drilling oil and gas wells is a valve system (blowout preventer or BOP) located on top of wells. These valves can isolate wells by sealing around or shearing through obstructions in the well (e.g. drilling pipe and casing). If these valves fail or if some other barrier in a well fails, hydrocarbon loss to the environment is possible. Adding barriers capable of responding to a well control loss could alleviate these concerns. ExxonMobil is currently evaluating concepts to provide two additional methods to kill an out-of-control well. One utilizes rapid crosslinking polymers to form a polymer-plug seal inside a BOP after a failure. The other is to rapidly pump seawater into a well to produce back pressure that overpressures the entire well bore to keep hydrocarbons from escaping oil / gas bearing zones.\n Mixing dicyclopentadiene (DCPD) and other monomers with a ruthenium-based catalyst causes a rapid polymerization reaction that forms a high-strength, stable solid. These reactions can occur under extreme temperatures and pressures while withstanding significant contamination from other fluids and solids. The well-control concept is to rapidly pump the monomers and catalyst into a leaking BOP to form a polymer seal that prevents further flow.\n The seawater injection concept uses high-pressure and capacity pumps located on a surface vessel and a conduit from these pumps to a port on a BOP. If a blowout occurs, seawater at high rate is pumped in the BOP. If BOP seal failure is the reason for containment loss, then the seawater will overpressure the BOP and seawater will displace the hydrocarbons passing through the leak point. Seawater injection will also overpressure the entire wellbore to keep hydrocarbons from escaping anywhere in the well. For example, if a leak occurs deep in the well, seawater injection into the BOP will overpressure the entire well and the seawater will replace the hydrocarbon flowing through the leak point.\n We have conducted testing of the polymer plug concept at representative temperatures and pressures using a small-scale BOP. Polymer seals were formed when the scale BOP was flowing drilling mud, a crude-oil surrogate, and water. The seals held up to 5,000 psi pressure for almost 18 hours. We have completed modeling of the seawater injection concept to define pumping needs. This paper describes the current status of concept development.","PeriodicalId":14447,"journal":{"name":"International Oil Spill Conference Proceedings","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Advanced Well Control Reduces Risk of a Blowout\",\"authors\":\"T. Nedwed, Doug Mitchell\",\"doi\":\"10.7901/2169-3358-2021.1.687221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n There are still concerns about well control especially for operations in sensitive environments. Currently the final barrier while drilling oil and gas wells is a valve system (blowout preventer or BOP) located on top of wells. These valves can isolate wells by sealing around or shearing through obstructions in the well (e.g. drilling pipe and casing). If these valves fail or if some other barrier in a well fails, hydrocarbon loss to the environment is possible. Adding barriers capable of responding to a well control loss could alleviate these concerns. ExxonMobil is currently evaluating concepts to provide two additional methods to kill an out-of-control well. One utilizes rapid crosslinking polymers to form a polymer-plug seal inside a BOP after a failure. The other is to rapidly pump seawater into a well to produce back pressure that overpressures the entire well bore to keep hydrocarbons from escaping oil / gas bearing zones.\\n Mixing dicyclopentadiene (DCPD) and other monomers with a ruthenium-based catalyst causes a rapid polymerization reaction that forms a high-strength, stable solid. These reactions can occur under extreme temperatures and pressures while withstanding significant contamination from other fluids and solids. The well-control concept is to rapidly pump the monomers and catalyst into a leaking BOP to form a polymer seal that prevents further flow.\\n The seawater injection concept uses high-pressure and capacity pumps located on a surface vessel and a conduit from these pumps to a port on a BOP. If a blowout occurs, seawater at high rate is pumped in the BOP. If BOP seal failure is the reason for containment loss, then the seawater will overpressure the BOP and seawater will displace the hydrocarbons passing through the leak point. Seawater injection will also overpressure the entire wellbore to keep hydrocarbons from escaping anywhere in the well. For example, if a leak occurs deep in the well, seawater injection into the BOP will overpressure the entire well and the seawater will replace the hydrocarbon flowing through the leak point.\\n We have conducted testing of the polymer plug concept at representative temperatures and pressures using a small-scale BOP. Polymer seals were formed when the scale BOP was flowing drilling mud, a crude-oil surrogate, and water. The seals held up to 5,000 psi pressure for almost 18 hours. We have completed modeling of the seawater injection concept to define pumping needs. This paper describes the current status of concept development.\",\"PeriodicalId\":14447,\"journal\":{\"name\":\"International Oil Spill Conference Proceedings\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Oil Spill Conference Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7901/2169-3358-2021.1.687221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Oil Spill Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7901/2169-3358-2021.1.687221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

人们仍然担心井控问题,特别是在敏感环境下的作业。目前,钻井油气井的最后一道屏障是位于井顶的阀门系统(防喷器或防喷器)。这些阀门可以通过密封或剪切井中的障碍物(例如钻杆和套管)来隔离井。如果这些阀门失效,或者井中的其他屏障失效,就有可能向环境中泄漏碳氢化合物。增加能够应对井控漏失的屏障可以缓解这些担忧。ExxonMobil目前正在评估另外两种封堵失控井的方法。一种是在防喷器发生故障后,利用快速交联聚合物在防喷器内部形成聚合物塞密封。另一种方法是将海水快速泵入井中,产生背压,使整个井眼产生超压,以防止碳氢化合物从含油气区域逸出。将二环戊二烯(DCPD)和其他单体与钌基催化剂混合,可引起快速聚合反应,形成高强度、稳定的固体。这些反应可以在极端的温度和压力下发生,同时承受来自其他流体和固体的严重污染。井控概念是将单体和催化剂快速泵入泄漏的防喷器中,形成聚合物密封,防止进一步流动。海水注入的概念是使用安装在水面船舶上的高压泵和容量泵,以及从这些泵到防喷器端口的管道。如果发生井喷,高速率的海水将被泵入防喷器。如果防喷器密封失效是导致泄漏的原因,那么海水将对防喷器产生超压,海水将取代通过泄漏点的碳氢化合物。注入海水也会对整个井筒产生超压,以防止碳氢化合物在井中的任何地方泄漏。例如,如果泄漏发生在井的深处,注入防喷器的海水将使整个井产生超压,海水将取代流经泄漏点的碳氢化合物。我们使用小型防喷器在具有代表性的温度和压力下对聚合物桥塞概念进行了测试。聚合物密封是在规模防喷器流动钻井泥浆、原油替代物和水时形成的。密封件可承受高达5000 psi的压力近18小时。我们已经完成了海水注入概念的建模,以确定泵送需求。本文介绍了概念发展的现状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advanced Well Control Reduces Risk of a Blowout
There are still concerns about well control especially for operations in sensitive environments. Currently the final barrier while drilling oil and gas wells is a valve system (blowout preventer or BOP) located on top of wells. These valves can isolate wells by sealing around or shearing through obstructions in the well (e.g. drilling pipe and casing). If these valves fail or if some other barrier in a well fails, hydrocarbon loss to the environment is possible. Adding barriers capable of responding to a well control loss could alleviate these concerns. ExxonMobil is currently evaluating concepts to provide two additional methods to kill an out-of-control well. One utilizes rapid crosslinking polymers to form a polymer-plug seal inside a BOP after a failure. The other is to rapidly pump seawater into a well to produce back pressure that overpressures the entire well bore to keep hydrocarbons from escaping oil / gas bearing zones. Mixing dicyclopentadiene (DCPD) and other monomers with a ruthenium-based catalyst causes a rapid polymerization reaction that forms a high-strength, stable solid. These reactions can occur under extreme temperatures and pressures while withstanding significant contamination from other fluids and solids. The well-control concept is to rapidly pump the monomers and catalyst into a leaking BOP to form a polymer seal that prevents further flow. The seawater injection concept uses high-pressure and capacity pumps located on a surface vessel and a conduit from these pumps to a port on a BOP. If a blowout occurs, seawater at high rate is pumped in the BOP. If BOP seal failure is the reason for containment loss, then the seawater will overpressure the BOP and seawater will displace the hydrocarbons passing through the leak point. Seawater injection will also overpressure the entire wellbore to keep hydrocarbons from escaping anywhere in the well. For example, if a leak occurs deep in the well, seawater injection into the BOP will overpressure the entire well and the seawater will replace the hydrocarbon flowing through the leak point. We have conducted testing of the polymer plug concept at representative temperatures and pressures using a small-scale BOP. Polymer seals were formed when the scale BOP was flowing drilling mud, a crude-oil surrogate, and water. The seals held up to 5,000 psi pressure for almost 18 hours. We have completed modeling of the seawater injection concept to define pumping needs. This paper describes the current status of concept development.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
From the deep ocean to the coasts and estuaries through the shelf: linking coastal response to a deep blow-out Case Study of a SCAT Survey and Successful Remediation Strategy by Mechanical Mixing of a Fuel Oil Spill into a Mountain Stream Using Oil Spill Modeling in Oil Spill Exercises and Drills In Situ Burn Testing of Weathered and Emulsified Crude Oils Historical Dispersant Use in U.S. Waters 1968–2020
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1