{"title":"活性炭接枝三聚氰胺改性聚丙烯酸及其页岩缓蚀效果研究","authors":"Mulya M. Nur , Tawfik A. Saleh","doi":"10.1016/j.upstre.2022.100065","DOIUrl":null,"url":null,"abstract":"<div><p><span>This work reports on the synthesis of allyl-activated carbon modified with polyacrylic and then aminated by melamine. The obtained melamine-modified polyacrylic grafted activated carbon (C-g-AM) was then characterized for structural and morphological properties. The synthesized C-g-AM was characterized by several tools. This was followed by an evaluation of the inhibitive ability of the material by performing various inhibition tests, including shale recovery, anti-swelling, and immersion tests. 2 wt% C-g-AM effectively decreased water invasion into shale, because the combination of activated carbon as a core-center particle with the melamine–polyacrylic acid component is absorbed on clay surface through </span>hydrogen bonds and electrostatic interactions.</p></div>","PeriodicalId":101264,"journal":{"name":"Upstream Oil and Gas Technology","volume":"8 ","pages":"Article 100065"},"PeriodicalIF":2.6000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Melamine-modified polyacrylic grafted on activated carbon and its efficiency for shale inhibition\",\"authors\":\"Mulya M. Nur , Tawfik A. Saleh\",\"doi\":\"10.1016/j.upstre.2022.100065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>This work reports on the synthesis of allyl-activated carbon modified with polyacrylic and then aminated by melamine. The obtained melamine-modified polyacrylic grafted activated carbon (C-g-AM) was then characterized for structural and morphological properties. The synthesized C-g-AM was characterized by several tools. This was followed by an evaluation of the inhibitive ability of the material by performing various inhibition tests, including shale recovery, anti-swelling, and immersion tests. 2 wt% C-g-AM effectively decreased water invasion into shale, because the combination of activated carbon as a core-center particle with the melamine–polyacrylic acid component is absorbed on clay surface through </span>hydrogen bonds and electrostatic interactions.</p></div>\",\"PeriodicalId\":101264,\"journal\":{\"name\":\"Upstream Oil and Gas Technology\",\"volume\":\"8 \",\"pages\":\"Article 100065\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Upstream Oil and Gas Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666260422000020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Upstream Oil and Gas Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666260422000020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Melamine-modified polyacrylic grafted on activated carbon and its efficiency for shale inhibition
This work reports on the synthesis of allyl-activated carbon modified with polyacrylic and then aminated by melamine. The obtained melamine-modified polyacrylic grafted activated carbon (C-g-AM) was then characterized for structural and morphological properties. The synthesized C-g-AM was characterized by several tools. This was followed by an evaluation of the inhibitive ability of the material by performing various inhibition tests, including shale recovery, anti-swelling, and immersion tests. 2 wt% C-g-AM effectively decreased water invasion into shale, because the combination of activated carbon as a core-center particle with the melamine–polyacrylic acid component is absorbed on clay surface through hydrogen bonds and electrostatic interactions.