{"title":"新西兰克马德克弧兄弟海底火山的热液羽流监测二十年","authors":"S. Walker, C. D. de Ronde","doi":"10.5382/econgeo.4998","DOIUrl":null,"url":null,"abstract":"\n Brothers volcano is arguably the most well-studied submarine arc volcano on Earth. Between 1996, when massive sulfides were first recovered by dredging, and 2018, when International Ocean Discovery Program (IODP) Expedition 376 recovered cores from as deep as 453 m below the sea floor at two chemically distinct hydrothermal upflow zones, over 60 conductivity-temperature-depth (CTD) vertical casts and tow-yo operations mapped hydrothermal plumes over and around the edifice by employing hydrothermal tracer-specific sensors. These surveys started in 1999 and were completed during nine separate expeditions at one- to three-year intervals, except for a six-year gap between 2011 and 2017. Hydrothermal plume distributions over this two-decade period show variability in the intensity and vertical rise height of plumes from the four main vent fields (Upper Cone, Lower Cone, NW Caldera, and Upper Caldera, with the latter not discovered until 2017). Upper Cone plumes were more intense than all other sites in 1999, 2002, 2007, and 2009, then significantly diminished from 2011 to 2018. The Lower Cone plume was the most intense in 2004, then the NW Caldera site became the dominant source of hydrothermal particles from 2011 to 2018. Despite the gap of six years between 2011 and 2017, hydrothermal output appears to have increased within the caldera sometime after the 2009 survey while simultaneously decreasing in intensity at the cone sites. This supports other evidence of linkages between the cone and caldera sites in the deep hydrothermal circulation system, and may be related to the predicted deepening of hydrothermal circulation, infiltration of seawater to facilitate “mining” of magmatic brines, and modulation of subseafloor mineralization processes associated with a modeled, pulsed injection of magmatic gasses. The surveys also revealed ways in which the highly variable regional hydrographic environment impacts the flux of hydrothermal products to the surrounding ocean. Plumes from sources located above the caldera rim disperse hydrothermal components without hindrance, but particles and heat from sources within the caldera become trapped and are dispersed episodically by caldera-flushing events. While on site for 18 days in 2018, repeat CTD casts into the deepest part of the caldera, which was isolated from the surrounding ocean, showed a progressive increase in temperature, representing a net heat flux of 79 MW from conductive and advective sources deeper than 1,570 m.","PeriodicalId":11469,"journal":{"name":"Economic Geology","volume":"68 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2023-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Two Decades of Monitoring Hydrothermal Plumes at the Brothers Submarine Volcano, Kermadec Arc, New Zealand\",\"authors\":\"S. Walker, C. D. de Ronde\",\"doi\":\"10.5382/econgeo.4998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Brothers volcano is arguably the most well-studied submarine arc volcano on Earth. Between 1996, when massive sulfides were first recovered by dredging, and 2018, when International Ocean Discovery Program (IODP) Expedition 376 recovered cores from as deep as 453 m below the sea floor at two chemically distinct hydrothermal upflow zones, over 60 conductivity-temperature-depth (CTD) vertical casts and tow-yo operations mapped hydrothermal plumes over and around the edifice by employing hydrothermal tracer-specific sensors. These surveys started in 1999 and were completed during nine separate expeditions at one- to three-year intervals, except for a six-year gap between 2011 and 2017. Hydrothermal plume distributions over this two-decade period show variability in the intensity and vertical rise height of plumes from the four main vent fields (Upper Cone, Lower Cone, NW Caldera, and Upper Caldera, with the latter not discovered until 2017). Upper Cone plumes were more intense than all other sites in 1999, 2002, 2007, and 2009, then significantly diminished from 2011 to 2018. The Lower Cone plume was the most intense in 2004, then the NW Caldera site became the dominant source of hydrothermal particles from 2011 to 2018. Despite the gap of six years between 2011 and 2017, hydrothermal output appears to have increased within the caldera sometime after the 2009 survey while simultaneously decreasing in intensity at the cone sites. This supports other evidence of linkages between the cone and caldera sites in the deep hydrothermal circulation system, and may be related to the predicted deepening of hydrothermal circulation, infiltration of seawater to facilitate “mining” of magmatic brines, and modulation of subseafloor mineralization processes associated with a modeled, pulsed injection of magmatic gasses. The surveys also revealed ways in which the highly variable regional hydrographic environment impacts the flux of hydrothermal products to the surrounding ocean. Plumes from sources located above the caldera rim disperse hydrothermal components without hindrance, but particles and heat from sources within the caldera become trapped and are dispersed episodically by caldera-flushing events. While on site for 18 days in 2018, repeat CTD casts into the deepest part of the caldera, which was isolated from the surrounding ocean, showed a progressive increase in temperature, representing a net heat flux of 79 MW from conductive and advective sources deeper than 1,570 m.\",\"PeriodicalId\":11469,\"journal\":{\"name\":\"Economic Geology\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2023-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Economic Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5382/econgeo.4998\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Economic Geology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5382/econgeo.4998","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Two Decades of Monitoring Hydrothermal Plumes at the Brothers Submarine Volcano, Kermadec Arc, New Zealand
Brothers volcano is arguably the most well-studied submarine arc volcano on Earth. Between 1996, when massive sulfides were first recovered by dredging, and 2018, when International Ocean Discovery Program (IODP) Expedition 376 recovered cores from as deep as 453 m below the sea floor at two chemically distinct hydrothermal upflow zones, over 60 conductivity-temperature-depth (CTD) vertical casts and tow-yo operations mapped hydrothermal plumes over and around the edifice by employing hydrothermal tracer-specific sensors. These surveys started in 1999 and were completed during nine separate expeditions at one- to three-year intervals, except for a six-year gap between 2011 and 2017. Hydrothermal plume distributions over this two-decade period show variability in the intensity and vertical rise height of plumes from the four main vent fields (Upper Cone, Lower Cone, NW Caldera, and Upper Caldera, with the latter not discovered until 2017). Upper Cone plumes were more intense than all other sites in 1999, 2002, 2007, and 2009, then significantly diminished from 2011 to 2018. The Lower Cone plume was the most intense in 2004, then the NW Caldera site became the dominant source of hydrothermal particles from 2011 to 2018. Despite the gap of six years between 2011 and 2017, hydrothermal output appears to have increased within the caldera sometime after the 2009 survey while simultaneously decreasing in intensity at the cone sites. This supports other evidence of linkages between the cone and caldera sites in the deep hydrothermal circulation system, and may be related to the predicted deepening of hydrothermal circulation, infiltration of seawater to facilitate “mining” of magmatic brines, and modulation of subseafloor mineralization processes associated with a modeled, pulsed injection of magmatic gasses. The surveys also revealed ways in which the highly variable regional hydrographic environment impacts the flux of hydrothermal products to the surrounding ocean. Plumes from sources located above the caldera rim disperse hydrothermal components without hindrance, but particles and heat from sources within the caldera become trapped and are dispersed episodically by caldera-flushing events. While on site for 18 days in 2018, repeat CTD casts into the deepest part of the caldera, which was isolated from the surrounding ocean, showed a progressive increase in temperature, representing a net heat flux of 79 MW from conductive and advective sources deeper than 1,570 m.
期刊介绍:
The journal, now published semi-quarterly, was first published in 1905 by the Economic Geology Publishing Company (PUBCO), a not-for-profit company established for the purpose of publishing a periodical devoted to economic geology. On the founding of SEG in 1920, a cooperative arrangement between PUBCO and SEG made the journal the official organ of the Society, and PUBCO agreed to carry the Society''s name on the front cover under the heading "Bulletin of the Society of Economic Geologists". PUBCO and SEG continued to operate as cooperating but separate entities until 2001, when the Board of Directors of PUBCO and the Council of SEG, by unanimous consent, approved a formal agreement of merger. The former activities of the PUBCO Board of Directors are now carried out by a Publications Board, a new self-governing unit within SEG.