{"title":"高效换热器涡发生器管内紊流的流动和换热行为","authors":"Islam, Z. Chong, S. Bojanampati","doi":"10.1115/FEDSM2018-83240","DOIUrl":null,"url":null,"abstract":"Various technologies have been developed to enhance flow mixing and heat transfer in order to develop an efficient compact heat exchanging devices. Vortex generators/turbulent promoters generate the vortices which reduce the boundary layer thickness and introduce the better mixing of the fluid to enhance the heat transfer. In this research experimental investigations have been carried out to study the effect of delta winglet vortex generator pairs on heat transfer and flow behavior.\n To generate longitudinal vortex flow, two pairs of the delta winglet vortex generators (DWVG) with the length of 10mm and winglet-pitch to tube-diameter ratio (PR = 4.8) are mounted on the inner wall of a circular tube. The DWVG pairs with two different winglet-height to tube-diameter ratios (Blockage ratio, BR = 0.1 and 0.2), three attack angles (α = 10°, 20°, 30°) and three spacings between leading edges (S = 10, 15 and 20mm) are studied. The experiments were conducted with DWVGs pairs for the air flow range of Reynolds numbers 5000–25000. The influence of the DWVGs on heat transfer and pressure drop was investigated in terms of the Nusselt number and friction factor. The experimental results indicate that DWVG pair in a tube results in a considerable enhancement in Nusselt number (Nu) with some pressure penalty. It is found that DWVG increases Nu up to 85% over the smooth tube. It is also observed that Nusselt number increases with Re, blockage ratio and attack angle. Friction factor decreases with Re but increases with blockage ratio, spacing and attack angle. And 30° DWVG pair with S = 20mm, BR = 0.2 gets the highest friction factor. The Highest thermal performance enhancement (TPE) was noticed for α = 10°, S = 20mm, BR = 0.2 for turbulent flows. To obtain qualitative information on the flow behavior and vortex structures, flow was visualized by laser sheet using smoke as a tracer supplied at the entrance of the test section. The generation and development of longitudinal vortices influenced by DWVG pairs were clearly observed.","PeriodicalId":23480,"journal":{"name":"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fluid Flow and Heat Transfer Behavior for Turbulent Flows in a Tube With Vortex Generator Pairs for an Efficient Heat Exchanger\",\"authors\":\"Islam, Z. Chong, S. Bojanampati\",\"doi\":\"10.1115/FEDSM2018-83240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Various technologies have been developed to enhance flow mixing and heat transfer in order to develop an efficient compact heat exchanging devices. Vortex generators/turbulent promoters generate the vortices which reduce the boundary layer thickness and introduce the better mixing of the fluid to enhance the heat transfer. In this research experimental investigations have been carried out to study the effect of delta winglet vortex generator pairs on heat transfer and flow behavior.\\n To generate longitudinal vortex flow, two pairs of the delta winglet vortex generators (DWVG) with the length of 10mm and winglet-pitch to tube-diameter ratio (PR = 4.8) are mounted on the inner wall of a circular tube. The DWVG pairs with two different winglet-height to tube-diameter ratios (Blockage ratio, BR = 0.1 and 0.2), three attack angles (α = 10°, 20°, 30°) and three spacings between leading edges (S = 10, 15 and 20mm) are studied. The experiments were conducted with DWVGs pairs for the air flow range of Reynolds numbers 5000–25000. The influence of the DWVGs on heat transfer and pressure drop was investigated in terms of the Nusselt number and friction factor. The experimental results indicate that DWVG pair in a tube results in a considerable enhancement in Nusselt number (Nu) with some pressure penalty. It is found that DWVG increases Nu up to 85% over the smooth tube. It is also observed that Nusselt number increases with Re, blockage ratio and attack angle. Friction factor decreases with Re but increases with blockage ratio, spacing and attack angle. And 30° DWVG pair with S = 20mm, BR = 0.2 gets the highest friction factor. The Highest thermal performance enhancement (TPE) was noticed for α = 10°, S = 20mm, BR = 0.2 for turbulent flows. To obtain qualitative information on the flow behavior and vortex structures, flow was visualized by laser sheet using smoke as a tracer supplied at the entrance of the test section. The generation and development of longitudinal vortices influenced by DWVG pairs were clearly observed.\",\"PeriodicalId\":23480,\"journal\":{\"name\":\"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/FEDSM2018-83240\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/FEDSM2018-83240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了研制高效紧凑的换热装置,人们开发了各种技术来增强流动混合和换热。涡发生器/湍流促进器产生的涡减少了边界层厚度,并引入了更好的流体混合,以加强传热。本文通过实验研究了三角小波涡发生器对传热和流动特性的影响。为了产生纵向涡流,在圆管内壁安装两对长10mm、小翼节距与管径比PR = 4.8的三角小翼涡发生器(DWVG)。研究了两种不同的小翼高径比(堵塞比,BR = 0.1和0.2),三种攻角(α = 10°,20°,30°)和三种前缘间距(S = 10, 15和20mm)的DWVG对。在雷诺数为5000 ~ 25000的气流范围内,采用dwvg对进行了实验。从努塞尔数和摩擦系数的角度考察了小波波导对传热和压降的影响。实验结果表明,DWVG对在一定压力损失的情况下显著提高了努塞尔数(Nu)。结果表明,与光滑管相比,DWVG使Nu增加了85%。Nusselt数随Re、堵塞比和攻角的增加而增加。摩擦系数随Re减小,随堵塞比、间距和攻角增大而增大。当S = 20mm, BR = 0.2时,30°DWVG副的摩擦因数最高。当α = 10°,S = 20mm, BR = 0.2时,热性能增强(TPE)最大。为了获得流动特性和旋涡结构的定性信息,在试验段入口处用烟雾作为示踪剂的激光片对流动进行了可视化。观测到受DWVG对影响的纵向涡的产生和发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fluid Flow and Heat Transfer Behavior for Turbulent Flows in a Tube With Vortex Generator Pairs for an Efficient Heat Exchanger
Various technologies have been developed to enhance flow mixing and heat transfer in order to develop an efficient compact heat exchanging devices. Vortex generators/turbulent promoters generate the vortices which reduce the boundary layer thickness and introduce the better mixing of the fluid to enhance the heat transfer. In this research experimental investigations have been carried out to study the effect of delta winglet vortex generator pairs on heat transfer and flow behavior. To generate longitudinal vortex flow, two pairs of the delta winglet vortex generators (DWVG) with the length of 10mm and winglet-pitch to tube-diameter ratio (PR = 4.8) are mounted on the inner wall of a circular tube. The DWVG pairs with two different winglet-height to tube-diameter ratios (Blockage ratio, BR = 0.1 and 0.2), three attack angles (α = 10°, 20°, 30°) and three spacings between leading edges (S = 10, 15 and 20mm) are studied. The experiments were conducted with DWVGs pairs for the air flow range of Reynolds numbers 5000–25000. The influence of the DWVGs on heat transfer and pressure drop was investigated in terms of the Nusselt number and friction factor. The experimental results indicate that DWVG pair in a tube results in a considerable enhancement in Nusselt number (Nu) with some pressure penalty. It is found that DWVG increases Nu up to 85% over the smooth tube. It is also observed that Nusselt number increases with Re, blockage ratio and attack angle. Friction factor decreases with Re but increases with blockage ratio, spacing and attack angle. And 30° DWVG pair with S = 20mm, BR = 0.2 gets the highest friction factor. The Highest thermal performance enhancement (TPE) was noticed for α = 10°, S = 20mm, BR = 0.2 for turbulent flows. To obtain qualitative information on the flow behavior and vortex structures, flow was visualized by laser sheet using smoke as a tracer supplied at the entrance of the test section. The generation and development of longitudinal vortices influenced by DWVG pairs were clearly observed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental Investigation of a Flapping Motion Downstream of a Backward Facing Step Experimental Study on Modeled Caudal Fins Propelling by Elastic Deformation Simulation of Coalescence and Breakup of Dispersed Water Droplets in Continuous Oil Phase Multi-Objective Optimization on Inlet Pipe of a Vertical Inline Pump Based on Genetic Algorithm and Artificial Neural Network Turbulent Flow Characteristics Over Offset Wall Confined Columns in a Channel at Low Reynolds Numbers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1