{"title":"空气污染分析:多壁碳纳米管镍浆作为新型空气中汞的吸附剂","authors":"A. Ebrahimi, Ahmad Salarifar","doi":"10.24200/amecj.v2.i03.70","DOIUrl":null,"url":null,"abstract":"Mercury as a hazardous material caused health problem in humans.In this study,mercury vapor removed from air by nickel-coated on multi-walled carbon nanotubes(Ni-MWCNTs)as a novel sorbent.Amalgamation of mercury with Ni-MWCNTs was achieved by solid-gas phase removal method(SGPR).In bench scale set up, the mercury vapor generated and moved to sorbent at optimized flow rate.After thermal desorption of Ni-MWCNTs at 200oC, the mercury vapor flowed to quartz glass cell with argon gas and determined by cold vapor atomic absorption spectrometer technique(CV-AAS).In optimized conditions,25 mg of Ni-MWCNTs and MWCNTs with different size from 30-100nm was used.The adsorption capacity of sorbents was obtained 194 mg g-1 and 64 mg g-1,respectively.The efficient recovery was obtained at optimized conditions such as, temperature of 25-40 and flow rate of 200 mL min-1.So, Ni-MWCNTs had good potential for removal of mercury vapor from the air and can be used as a low cost and efficient sorbent in industrial workplace","PeriodicalId":7797,"journal":{"name":"Analytical Methods in Environmental Chemistry Journal","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Air pollution Analysis: Nickel paste on Multi-walled carbon nanotubes as novel adsorbent for the mercury removal from air\",\"authors\":\"A. Ebrahimi, Ahmad Salarifar\",\"doi\":\"10.24200/amecj.v2.i03.70\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mercury as a hazardous material caused health problem in humans.In this study,mercury vapor removed from air by nickel-coated on multi-walled carbon nanotubes(Ni-MWCNTs)as a novel sorbent.Amalgamation of mercury with Ni-MWCNTs was achieved by solid-gas phase removal method(SGPR).In bench scale set up, the mercury vapor generated and moved to sorbent at optimized flow rate.After thermal desorption of Ni-MWCNTs at 200oC, the mercury vapor flowed to quartz glass cell with argon gas and determined by cold vapor atomic absorption spectrometer technique(CV-AAS).In optimized conditions,25 mg of Ni-MWCNTs and MWCNTs with different size from 30-100nm was used.The adsorption capacity of sorbents was obtained 194 mg g-1 and 64 mg g-1,respectively.The efficient recovery was obtained at optimized conditions such as, temperature of 25-40 and flow rate of 200 mL min-1.So, Ni-MWCNTs had good potential for removal of mercury vapor from the air and can be used as a low cost and efficient sorbent in industrial workplace\",\"PeriodicalId\":7797,\"journal\":{\"name\":\"Analytical Methods in Environmental Chemistry Journal\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Methods in Environmental Chemistry Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24200/amecj.v2.i03.70\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Methods in Environmental Chemistry Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24200/amecj.v2.i03.70","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Air pollution Analysis: Nickel paste on Multi-walled carbon nanotubes as novel adsorbent for the mercury removal from air
Mercury as a hazardous material caused health problem in humans.In this study,mercury vapor removed from air by nickel-coated on multi-walled carbon nanotubes(Ni-MWCNTs)as a novel sorbent.Amalgamation of mercury with Ni-MWCNTs was achieved by solid-gas phase removal method(SGPR).In bench scale set up, the mercury vapor generated and moved to sorbent at optimized flow rate.After thermal desorption of Ni-MWCNTs at 200oC, the mercury vapor flowed to quartz glass cell with argon gas and determined by cold vapor atomic absorption spectrometer technique(CV-AAS).In optimized conditions,25 mg of Ni-MWCNTs and MWCNTs with different size from 30-100nm was used.The adsorption capacity of sorbents was obtained 194 mg g-1 and 64 mg g-1,respectively.The efficient recovery was obtained at optimized conditions such as, temperature of 25-40 and flow rate of 200 mL min-1.So, Ni-MWCNTs had good potential for removal of mercury vapor from the air and can be used as a low cost and efficient sorbent in industrial workplace