M. A. Campo, D. Blanco, G. Carluccio, O. Litschke, S. Bruni, N. Llombart
{"title":"用于Tbps无线通信的圆偏振透镜天线","authors":"M. A. Campo, D. Blanco, G. Carluccio, O. Litschke, S. Bruni, N. Llombart","doi":"10.23919/EUMC.2018.8541685","DOIUrl":null,"url":null,"abstract":"The exponentially increasing demand for highspeed wireless links can be only efficiently satisfied with the development of future XG wireless communication networks, based on higher carrier signal frequencies, starting from 100 GHz. In this contribution, a circularly polarized G-band leaky-wave fed lens antenna with an integrated dielectric grid polarizer is presented, which can fulfill the challenging requirements for these future XG networks. A design is proposed in low dielectric permittivity material with a feed matching better than −10dB over a 44 % of relative bandwidth. The circularly polarized lens aperture efficiency is higher than 75% over a 35 % relative bandwidth, with an axial ratio lower than 3dB. Analytical tools have been applied to optimize the lens aperture efficiency, validating the results via full wave simulations. A lens prototype has been now fabricated and is currently being measured.","PeriodicalId":6472,"journal":{"name":"2018 48th European Microwave Conference (EuMC)","volume":"29 1","pages":"1147-1150"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Circularly Polarized Lens Antenna for Tbps Wireless Communications\",\"authors\":\"M. A. Campo, D. Blanco, G. Carluccio, O. Litschke, S. Bruni, N. Llombart\",\"doi\":\"10.23919/EUMC.2018.8541685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The exponentially increasing demand for highspeed wireless links can be only efficiently satisfied with the development of future XG wireless communication networks, based on higher carrier signal frequencies, starting from 100 GHz. In this contribution, a circularly polarized G-band leaky-wave fed lens antenna with an integrated dielectric grid polarizer is presented, which can fulfill the challenging requirements for these future XG networks. A design is proposed in low dielectric permittivity material with a feed matching better than −10dB over a 44 % of relative bandwidth. The circularly polarized lens aperture efficiency is higher than 75% over a 35 % relative bandwidth, with an axial ratio lower than 3dB. Analytical tools have been applied to optimize the lens aperture efficiency, validating the results via full wave simulations. A lens prototype has been now fabricated and is currently being measured.\",\"PeriodicalId\":6472,\"journal\":{\"name\":\"2018 48th European Microwave Conference (EuMC)\",\"volume\":\"29 1\",\"pages\":\"1147-1150\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 48th European Microwave Conference (EuMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/EUMC.2018.8541685\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 48th European Microwave Conference (EuMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUMC.2018.8541685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Circularly Polarized Lens Antenna for Tbps Wireless Communications
The exponentially increasing demand for highspeed wireless links can be only efficiently satisfied with the development of future XG wireless communication networks, based on higher carrier signal frequencies, starting from 100 GHz. In this contribution, a circularly polarized G-band leaky-wave fed lens antenna with an integrated dielectric grid polarizer is presented, which can fulfill the challenging requirements for these future XG networks. A design is proposed in low dielectric permittivity material with a feed matching better than −10dB over a 44 % of relative bandwidth. The circularly polarized lens aperture efficiency is higher than 75% over a 35 % relative bandwidth, with an axial ratio lower than 3dB. Analytical tools have been applied to optimize the lens aperture efficiency, validating the results via full wave simulations. A lens prototype has been now fabricated and is currently being measured.