J. Kawahara, I. Kume, H. Honda, Y. Kyogoku, F. Ito, M. Hane, K. Kata, Y. Hayashi
{"title":"采用倒装封装的低k/cu互连中分层失效的简单模型预测方法","authors":"J. Kawahara, I. Kume, H. Honda, Y. Kyogoku, F. Ito, M. Hane, K. Kata, Y. Hayashi","doi":"10.1109/IITC.2013.6615560","DOIUrl":null,"url":null,"abstract":"A model-base prediction method is proposed for delamination/cracking failures in Low-k/Cu interconnects with Pb-free FCBGA (Flip Chip-Ball Grid Array). The low-k failure under the solder bump, so called as a white bump (WB) failure, is caused by large thermal stress to a brittle low-k film during the cooling process from high reflow temperature for the Pb-free solder. Based on failure analysis using several low-k films and several packaging materials/structures, we found that occurrence of the WB failure is able to be predicted by a simple evaluation function of the simulated strain energy and a critical energy release rate of crack, which is defined by the fracture toughness and the adhesion-strength of the low-k film. According to this method, we can lead a preliminary design guideline on the bump pitch/structure or the interposer material/structure toward no WE failure quickly.","PeriodicalId":6377,"journal":{"name":"2013 IEEE International Interconnect Technology Conference - IITC","volume":"17 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A simple model-base prediction method for delamination failures in Low-k/cu interconnects with flip chip packages\",\"authors\":\"J. Kawahara, I. Kume, H. Honda, Y. Kyogoku, F. Ito, M. Hane, K. Kata, Y. Hayashi\",\"doi\":\"10.1109/IITC.2013.6615560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A model-base prediction method is proposed for delamination/cracking failures in Low-k/Cu interconnects with Pb-free FCBGA (Flip Chip-Ball Grid Array). The low-k failure under the solder bump, so called as a white bump (WB) failure, is caused by large thermal stress to a brittle low-k film during the cooling process from high reflow temperature for the Pb-free solder. Based on failure analysis using several low-k films and several packaging materials/structures, we found that occurrence of the WB failure is able to be predicted by a simple evaluation function of the simulated strain energy and a critical energy release rate of crack, which is defined by the fracture toughness and the adhesion-strength of the low-k film. According to this method, we can lead a preliminary design guideline on the bump pitch/structure or the interposer material/structure toward no WE failure quickly.\",\"PeriodicalId\":6377,\"journal\":{\"name\":\"2013 IEEE International Interconnect Technology Conference - IITC\",\"volume\":\"17 1\",\"pages\":\"1-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Interconnect Technology Conference - IITC\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IITC.2013.6615560\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Interconnect Technology Conference - IITC","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IITC.2013.6615560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A simple model-base prediction method for delamination failures in Low-k/cu interconnects with flip chip packages
A model-base prediction method is proposed for delamination/cracking failures in Low-k/Cu interconnects with Pb-free FCBGA (Flip Chip-Ball Grid Array). The low-k failure under the solder bump, so called as a white bump (WB) failure, is caused by large thermal stress to a brittle low-k film during the cooling process from high reflow temperature for the Pb-free solder. Based on failure analysis using several low-k films and several packaging materials/structures, we found that occurrence of the WB failure is able to be predicted by a simple evaluation function of the simulated strain energy and a critical energy release rate of crack, which is defined by the fracture toughness and the adhesion-strength of the low-k film. According to this method, we can lead a preliminary design guideline on the bump pitch/structure or the interposer material/structure toward no WE failure quickly.