异形柱对钢筋混凝土建筑抗侧载能力的影响

A. Rahaman, Asif Mostafa Anik, N. Serker
{"title":"异形柱对钢筋混凝土建筑抗侧载能力的影响","authors":"A. Rahaman, Asif Mostafa Anik, N. Serker","doi":"10.11648/J.AJCE.20180605.12","DOIUrl":null,"url":null,"abstract":"Column plays very important role in reinforced concrete building as total load is transferred through column. When rectangular columns are used in structure, columns can protrude out of the walls and corners which reduce aesthetic view of structure. Concrete structures with specially shaped columns has been found out as a solution of this problem. Not only for aesthetical point of view but also for structural aspect, specially shaped columns perform well. The aim of this study is to evaluate the comparative lateral load resistance capacity of buildings with rectangular columns and buildings with specially shaped columns. Four different buildings (i.e. 6 storey, 10 storey, 15 storey and 20 storey) are analysed with conventional rectangular columns and same buildings are analysed with specially shaped (i.e. L, Tee, cross) columns with same equivalent cross section area as of rectangular columns. In this paper, at first, the proposed buildings are analysed with linear static analysis and Secondly, linear dynamic analysis. From analysis results, it has been found that maximum storey displacements of all building models i.e. 6, 10, 15 & 20 storeys are under acceptable limit for both rectangular and special shaped columns. For rectangular shaped column building, displacement increases 11.78%, 8.83% & 34.84% & 5.51% respectively for 6, 10, 15 & 20 storeys building compared with building with special shaped columns. After analysis and comparison it is concluded that the buildings with specially shaped columns perform better under lateral load conditions than the buildings with conventional rectangular columns under the same loadings.","PeriodicalId":7606,"journal":{"name":"American Journal of Civil Engineering","volume":"61 1","pages":"147"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Effect of Special Shaped Column on Lateral Load Resistance Capacity of Reinforced Concrete (RC) Building\",\"authors\":\"A. Rahaman, Asif Mostafa Anik, N. Serker\",\"doi\":\"10.11648/J.AJCE.20180605.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Column plays very important role in reinforced concrete building as total load is transferred through column. When rectangular columns are used in structure, columns can protrude out of the walls and corners which reduce aesthetic view of structure. Concrete structures with specially shaped columns has been found out as a solution of this problem. Not only for aesthetical point of view but also for structural aspect, specially shaped columns perform well. The aim of this study is to evaluate the comparative lateral load resistance capacity of buildings with rectangular columns and buildings with specially shaped columns. Four different buildings (i.e. 6 storey, 10 storey, 15 storey and 20 storey) are analysed with conventional rectangular columns and same buildings are analysed with specially shaped (i.e. L, Tee, cross) columns with same equivalent cross section area as of rectangular columns. In this paper, at first, the proposed buildings are analysed with linear static analysis and Secondly, linear dynamic analysis. From analysis results, it has been found that maximum storey displacements of all building models i.e. 6, 10, 15 & 20 storeys are under acceptable limit for both rectangular and special shaped columns. For rectangular shaped column building, displacement increases 11.78%, 8.83% & 34.84% & 5.51% respectively for 6, 10, 15 & 20 storeys building compared with building with special shaped columns. After analysis and comparison it is concluded that the buildings with specially shaped columns perform better under lateral load conditions than the buildings with conventional rectangular columns under the same loadings.\",\"PeriodicalId\":7606,\"journal\":{\"name\":\"American Journal of Civil Engineering\",\"volume\":\"61 1\",\"pages\":\"147\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Civil Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.AJCE.20180605.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.AJCE.20180605.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

柱在钢筋混凝土建筑中起着非常重要的作用,总荷载通过柱传递。当在结构中使用矩形柱时,柱会凸出墙壁和角落,降低结构的美感。采用异形柱的混凝土结构是解决这一问题的一种方法。不仅从美学角度来看,而且从结构角度来看,特殊形状的柱子表现良好。本研究的目的是评估矩形柱建筑与异形柱建筑的抗侧载能力比较。四种不同的建筑(即6层、10层、15层和20层)用传统的矩形柱进行分析,同样的建筑用与矩形柱相同等效截面面积的特殊形状(即L型、Tee型、十字型)柱进行分析。本文首先对拟建建筑进行了线性静力分析,其次进行了线性动力分析。从分析结果来看,所有建筑模型(即6层、10层、15层和20层)的最大层位移对于矩形柱和异形柱都在可接受的限制范围内。对于矩形柱式建筑,6层、10层、15层、20层的位移比异形柱式建筑分别增加11.78%、8.83%、34.84%、5.51%。通过分析比较,得出在相同荷载作用下,异形柱结构的侧载性能优于常规矩形柱结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of Special Shaped Column on Lateral Load Resistance Capacity of Reinforced Concrete (RC) Building
Column plays very important role in reinforced concrete building as total load is transferred through column. When rectangular columns are used in structure, columns can protrude out of the walls and corners which reduce aesthetic view of structure. Concrete structures with specially shaped columns has been found out as a solution of this problem. Not only for aesthetical point of view but also for structural aspect, specially shaped columns perform well. The aim of this study is to evaluate the comparative lateral load resistance capacity of buildings with rectangular columns and buildings with specially shaped columns. Four different buildings (i.e. 6 storey, 10 storey, 15 storey and 20 storey) are analysed with conventional rectangular columns and same buildings are analysed with specially shaped (i.e. L, Tee, cross) columns with same equivalent cross section area as of rectangular columns. In this paper, at first, the proposed buildings are analysed with linear static analysis and Secondly, linear dynamic analysis. From analysis results, it has been found that maximum storey displacements of all building models i.e. 6, 10, 15 & 20 storeys are under acceptable limit for both rectangular and special shaped columns. For rectangular shaped column building, displacement increases 11.78%, 8.83% & 34.84% & 5.51% respectively for 6, 10, 15 & 20 storeys building compared with building with special shaped columns. After analysis and comparison it is concluded that the buildings with specially shaped columns perform better under lateral load conditions than the buildings with conventional rectangular columns under the same loadings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Conformance and Performance Evaluation of Land Use Plan of Yirba Town Performance of Simplified Damage-Based Concrete Models in Seismic Applications Pavement Service Life Prediction with PLAXIS 3D in Bangladesh Surface-Modified Nanoclays for Enhancing Resistance to Moisture Damage in Hot Mix Asphalt Structural Performance Evaluation of Diversion Weir Structure: Case Study of Basaka Small Scale Irrigation Scheme, Oromia, Ethiopia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1