利用Schrödinger-Poisson-Drift-Diffusion-Lindblad系统模拟基于量子点的单光子源

M. Kantner, T. Koprucki, H. Wünsche, U. Bandelow
{"title":"利用Schrödinger-Poisson-Drift-Diffusion-Lindblad系统模拟基于量子点的单光子源","authors":"M. Kantner, T. Koprucki, H. Wünsche, U. Bandelow","doi":"10.1109/SISPAD.2019.8870459","DOIUrl":null,"url":null,"abstract":"The device-scale simulation of electrically driven quantum light sources based on semiconductor quantum dots requires a combination of the (semi-)classical semiconductor device equations with cavity quantum electrodynamics. We present a comprehensive quantum-classical simulation approach that self-consistently couples the (semi-)classical drift-diffusion system to a Lindblad-type quantum master equation. This allows to describe the spatially resolved carrier transport in complex, multi-dimensional device geometries along with the fully quantum-mechanical light-matter interaction in the quantum dot-cavity system. The latter gives access to important quantum optical figures of merit, in particular the second-order correlation function of the emitted radiation. In order to account for the quantum confined Stark effect in the device’s internal electric field, the system is solved along with a Schrödinger–Poisson problem, that describes the envelope wave functions and energy levels of the quantum dot carriers. The approach is demonstrated by numerical simulations of a single-photon emitting diode.","PeriodicalId":6755,"journal":{"name":"2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"22 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Simulation of quantum dot based single-photon sources using the Schrödinger-Poisson-Drift-Diffusion-Lindblad system\",\"authors\":\"M. Kantner, T. Koprucki, H. Wünsche, U. Bandelow\",\"doi\":\"10.1109/SISPAD.2019.8870459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The device-scale simulation of electrically driven quantum light sources based on semiconductor quantum dots requires a combination of the (semi-)classical semiconductor device equations with cavity quantum electrodynamics. We present a comprehensive quantum-classical simulation approach that self-consistently couples the (semi-)classical drift-diffusion system to a Lindblad-type quantum master equation. This allows to describe the spatially resolved carrier transport in complex, multi-dimensional device geometries along with the fully quantum-mechanical light-matter interaction in the quantum dot-cavity system. The latter gives access to important quantum optical figures of merit, in particular the second-order correlation function of the emitted radiation. In order to account for the quantum confined Stark effect in the device’s internal electric field, the system is solved along with a Schrödinger–Poisson problem, that describes the envelope wave functions and energy levels of the quantum dot carriers. The approach is demonstrated by numerical simulations of a single-photon emitting diode.\",\"PeriodicalId\":6755,\"journal\":{\"name\":\"2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)\",\"volume\":\"22 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SISPAD.2019.8870459\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISPAD.2019.8870459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

基于半导体量子点的电驱动量子光源的器件级模拟需要将(半)经典半导体器件方程与腔量子电动力学相结合。我们提出了一种综合的量子经典模拟方法,该方法将(半)经典漂移扩散系统自洽地耦合到lindblade型量子主方程。这允许描述复杂的空间分辨载流子输运,多维器件几何以及量子点腔系统中完全量子力学的光-物质相互作用。后者提供了获得重要的量子光学数字的机会,特别是发射辐射的二阶相关函数。为了解释设备内部电场中的量子受限斯塔克效应,该系统与Schrödinger-Poisson问题一起解决,该问题描述了量子点载流子的包络波函数和能级。通过单光子发光二极管的数值模拟验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Simulation of quantum dot based single-photon sources using the Schrödinger-Poisson-Drift-Diffusion-Lindblad system
The device-scale simulation of electrically driven quantum light sources based on semiconductor quantum dots requires a combination of the (semi-)classical semiconductor device equations with cavity quantum electrodynamics. We present a comprehensive quantum-classical simulation approach that self-consistently couples the (semi-)classical drift-diffusion system to a Lindblad-type quantum master equation. This allows to describe the spatially resolved carrier transport in complex, multi-dimensional device geometries along with the fully quantum-mechanical light-matter interaction in the quantum dot-cavity system. The latter gives access to important quantum optical figures of merit, in particular the second-order correlation function of the emitted radiation. In order to account for the quantum confined Stark effect in the device’s internal electric field, the system is solved along with a Schrödinger–Poisson problem, that describes the envelope wave functions and energy levels of the quantum dot carriers. The approach is demonstrated by numerical simulations of a single-photon emitting diode.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of Stacking Faults on the Thermoelectric Figure of Merit of Si Nanowires Effect of Trap on Carrier Transport in InAs FET with Al2 O3 Oxide: DFT-based NEGF simulations Defect creation and Diffusion under electric fields from first-principles: the prototypical case of silicon dioxide Quantum Transport Simulations of the Zero Temperature Coefficient in Gate-all-around Nanowire pFETs Electronic and structural properties of interstitial titanium in crystalline silicon from first-principles simulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1