限制过采样以提高混合NoC/AFDX架构中的传输可调度性

S. Mouysset, Jérôme Ermont, Jean-Luc Scharbarg
{"title":"限制过采样以提高混合NoC/AFDX架构中的传输可调度性","authors":"S. Mouysset, Jérôme Ermont, Jean-Luc Scharbarg","doi":"10.1109/ETFA.2019.8869037","DOIUrl":null,"url":null,"abstract":"Current avionics architecture are based on an avionics full duplex switched Ethernet network (AFDX) that interconnects end systems. Avionics functions exchange data through Virtual Links (VLs), which are static flows with bounded bandwidth. The jitter for each VL at AFDX entrance has to be less than 500μs. This constraint is met, thanks to end system scheduling. The interconnection of many-cores by an AFDX backbone is envisioned for future avionics architecture. The principle is to distribute avionics functions on these many-cores. Many-cores are based on simple cores interconnected by a Network-on-Chip (NoC). The allocation of functions on the available cores as well as the transmission of flows on the NoC has to be performed in such a way that the jitter for each VL at AFDX entrance is still less than 500μs. A first solution has been proposed, where a single task in each many-core manages the transmission of the VLs. This task executes a scheduling table. The access to the Ethernet interface is then only allowed to one VL leading to a significant reduction of the jitter. By oversampling the VL transmissions in a minimum period, the waiting delays are also reduced. But this solution limits the number of VLs. In this paper, we propose to improve the transmission scheduling by relaxing constraint on the over sampling. A new scheduling table is constructed using an Integer Linear Program. This solution increases the number of VLs transmitted by the many-core and still reduces the waiting delays for the transmission of the VLs.","PeriodicalId":6682,"journal":{"name":"2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)","volume":"82 1","pages":"274-281"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Limiting over sampling to improve transmission schedulability in a mixed NoC/AFDX architecture\",\"authors\":\"S. Mouysset, Jérôme Ermont, Jean-Luc Scharbarg\",\"doi\":\"10.1109/ETFA.2019.8869037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current avionics architecture are based on an avionics full duplex switched Ethernet network (AFDX) that interconnects end systems. Avionics functions exchange data through Virtual Links (VLs), which are static flows with bounded bandwidth. The jitter for each VL at AFDX entrance has to be less than 500μs. This constraint is met, thanks to end system scheduling. The interconnection of many-cores by an AFDX backbone is envisioned for future avionics architecture. The principle is to distribute avionics functions on these many-cores. Many-cores are based on simple cores interconnected by a Network-on-Chip (NoC). The allocation of functions on the available cores as well as the transmission of flows on the NoC has to be performed in such a way that the jitter for each VL at AFDX entrance is still less than 500μs. A first solution has been proposed, where a single task in each many-core manages the transmission of the VLs. This task executes a scheduling table. The access to the Ethernet interface is then only allowed to one VL leading to a significant reduction of the jitter. By oversampling the VL transmissions in a minimum period, the waiting delays are also reduced. But this solution limits the number of VLs. In this paper, we propose to improve the transmission scheduling by relaxing constraint on the over sampling. A new scheduling table is constructed using an Integer Linear Program. This solution increases the number of VLs transmitted by the many-core and still reduces the waiting delays for the transmission of the VLs.\",\"PeriodicalId\":6682,\"journal\":{\"name\":\"2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)\",\"volume\":\"82 1\",\"pages\":\"274-281\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETFA.2019.8869037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.2019.8869037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当前的航空电子体系结构基于航空电子全双工交换以太网(AFDX),该网络将终端系统互连起来。航空电子功能通过虚拟链路交换数据,虚拟链路是具有有限带宽的静态流。每个VL在AFDX入口的抖动必须小于500μs。由于终端系统调度,这个约束得到了满足。通过AFDX主干网实现多核互连是未来航空电子架构的设想。其原理是将航电功能分布在这些多核上。多核是基于通过片上网络(NoC)相互连接的简单核。在可用内核上的功能分配以及流在NoC上的传输必须以这样一种方式执行,即在AFDX入口每个VL的抖动仍然小于500μs。提出了第一种解决方案,其中每个多核中的单个任务管理vl的传输。该任务执行调度表。对以太网接口的访问只允许一个VL,从而大大减少了抖动。通过在最小周期内对VL传输进行过采样,还可以减少等待延迟。但是这个解决方案限制了vl的数量。在本文中,我们提出通过放宽对过采样的约束来改进传输调度。利用整数线性规划构造了一个新的调度表。该方案增加了多核传输的vl数量,同时减少了vl传输的等待延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Limiting over sampling to improve transmission schedulability in a mixed NoC/AFDX architecture
Current avionics architecture are based on an avionics full duplex switched Ethernet network (AFDX) that interconnects end systems. Avionics functions exchange data through Virtual Links (VLs), which are static flows with bounded bandwidth. The jitter for each VL at AFDX entrance has to be less than 500μs. This constraint is met, thanks to end system scheduling. The interconnection of many-cores by an AFDX backbone is envisioned for future avionics architecture. The principle is to distribute avionics functions on these many-cores. Many-cores are based on simple cores interconnected by a Network-on-Chip (NoC). The allocation of functions on the available cores as well as the transmission of flows on the NoC has to be performed in such a way that the jitter for each VL at AFDX entrance is still less than 500μs. A first solution has been proposed, where a single task in each many-core manages the transmission of the VLs. This task executes a scheduling table. The access to the Ethernet interface is then only allowed to one VL leading to a significant reduction of the jitter. By oversampling the VL transmissions in a minimum period, the waiting delays are also reduced. But this solution limits the number of VLs. In this paper, we propose to improve the transmission scheduling by relaxing constraint on the over sampling. A new scheduling table is constructed using an Integer Linear Program. This solution increases the number of VLs transmitted by the many-core and still reduces the waiting delays for the transmission of the VLs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An analysis of energy storage system interaction in a multi objective model predictive control based energy management in DC microgrid Latency-Based 5G RAN Slicing Descriptor to Support Deterministic Industry 4.0 Applications CAP: Context-Aware Programming for Cyber Physical Systems Multiplexing Avionics and additional flows on a QoS-aware AFDX network Ultra-Reliable Low Latency based on Retransmission and Spatial Diversity in Slowly Fading Channels with Co-channel Interference
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1