化学浴沉积法合成无酶葡萄糖生物传感器用氧化铜纳米棒

Haneen Ali Jasim, O. Dakhil, Abbas Maleki
{"title":"化学浴沉积法合成无酶葡萄糖生物传感器用氧化铜纳米棒","authors":"Haneen Ali Jasim, O. Dakhil, Abbas Maleki","doi":"10.23851/mjs.v34i1.1228","DOIUrl":null,"url":null,"abstract":"In the present research, CuO NRs are produced on Indium Tin Oxide (ITO) using (CBD) growth process, and their electrochemical characteristics for glucose biosensors are studied. A field emission scanning electron microscope, x-ray diffractometer, energy dispersive x-ray, and UV-VIS spectroscopy were used to examine the morphology and crystallinity of a CuO film. The synthesized CuO film displays a monoclinic phase with average crystallite sizes of around (18–25) nm. CuO is composed of NRs aggregating together to construct flower and flower bud-like shape structures with a diameter between (20-80) nm and a thickness of the CuO film is about (158.5-285.7) nm. The energy gap of CuO NRs was 2.55 eV. The I-V characteristics of the biosensors were measured and evaluated at various glucose concentrations to determine their sensitivity. The electrocatalytic performance of the CuO for the detection of glucose was outstanding. With a very low limit of detection (LOD) of 0.45 μM and a sensitivity of 799 µA cm-2 Mm-1, the electrode attained a wide linear range from 0.5 to 2 mM. This result highlights the sensor's tremendous potential as a high-performance non-enzymatic glucose sensor that makes use of an original, cost-effective, and straightforward sensor design.\n ","PeriodicalId":7867,"journal":{"name":"Al-Mustansiriyah Journal of Science","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of CuO Nanrods Using Chemical Bath Deposition for a Nonenzymatic Glucose Biosensor\",\"authors\":\"Haneen Ali Jasim, O. Dakhil, Abbas Maleki\",\"doi\":\"10.23851/mjs.v34i1.1228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present research, CuO NRs are produced on Indium Tin Oxide (ITO) using (CBD) growth process, and their electrochemical characteristics for glucose biosensors are studied. A field emission scanning electron microscope, x-ray diffractometer, energy dispersive x-ray, and UV-VIS spectroscopy were used to examine the morphology and crystallinity of a CuO film. The synthesized CuO film displays a monoclinic phase with average crystallite sizes of around (18–25) nm. CuO is composed of NRs aggregating together to construct flower and flower bud-like shape structures with a diameter between (20-80) nm and a thickness of the CuO film is about (158.5-285.7) nm. The energy gap of CuO NRs was 2.55 eV. The I-V characteristics of the biosensors were measured and evaluated at various glucose concentrations to determine their sensitivity. The electrocatalytic performance of the CuO for the detection of glucose was outstanding. With a very low limit of detection (LOD) of 0.45 μM and a sensitivity of 799 µA cm-2 Mm-1, the electrode attained a wide linear range from 0.5 to 2 mM. This result highlights the sensor's tremendous potential as a high-performance non-enzymatic glucose sensor that makes use of an original, cost-effective, and straightforward sensor design.\\n \",\"PeriodicalId\":7867,\"journal\":{\"name\":\"Al-Mustansiriyah Journal of Science\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Al-Mustansiriyah Journal of Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23851/mjs.v34i1.1228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Al-Mustansiriyah Journal of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23851/mjs.v34i1.1228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,采用(CBD)生长工艺在氧化铟锡(ITO)上制备CuO纳米粒子,并对其用于葡萄糖生物传感器的电化学特性进行了研究。采用场发射扫描电子显微镜、x射线衍射仪、能量色散x射线和紫外可见光谱对CuO薄膜的形貌和结晶度进行了研究。合成的CuO薄膜呈单斜相,平均晶粒尺寸约为(18-25)nm。CuO由nr聚集在一起形成花和花蕾状结构,其直径在(20-80)nm之间,CuO膜厚度约为(158.5-285.7)nm。CuO NRs的能隙为2.55 eV。在不同的葡萄糖浓度下,测量和评估生物传感器的I-V特性,以确定其灵敏度。CuO对葡萄糖检测的电催化性能优异。该电极具有0.45 μM的极低检测限(LOD)和799 μ a cm- 2mm -1的灵敏度,实现了0.5至2mm的宽线性范围。这一结果突出了该传感器作为高性能非酶葡萄糖传感器的巨大潜力,该传感器利用了原始,经济高效且直接的传感器设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthesis of CuO Nanrods Using Chemical Bath Deposition for a Nonenzymatic Glucose Biosensor
In the present research, CuO NRs are produced on Indium Tin Oxide (ITO) using (CBD) growth process, and their electrochemical characteristics for glucose biosensors are studied. A field emission scanning electron microscope, x-ray diffractometer, energy dispersive x-ray, and UV-VIS spectroscopy were used to examine the morphology and crystallinity of a CuO film. The synthesized CuO film displays a monoclinic phase with average crystallite sizes of around (18–25) nm. CuO is composed of NRs aggregating together to construct flower and flower bud-like shape structures with a diameter between (20-80) nm and a thickness of the CuO film is about (158.5-285.7) nm. The energy gap of CuO NRs was 2.55 eV. The I-V characteristics of the biosensors were measured and evaluated at various glucose concentrations to determine their sensitivity. The electrocatalytic performance of the CuO for the detection of glucose was outstanding. With a very low limit of detection (LOD) of 0.45 μM and a sensitivity of 799 µA cm-2 Mm-1, the electrode attained a wide linear range from 0.5 to 2 mM. This result highlights the sensor's tremendous potential as a high-performance non-enzymatic glucose sensor that makes use of an original, cost-effective, and straightforward sensor design.  
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Prevalence and Physiological Effect of Blastocystis Hominis on Lipid Metabolism, Magnesium, and Zinc Levels in Diarrheal Patients Optical and Degradation Characteristics of Green Synthesized Cornstarch-Base Bioorganic Polymer Educational Certificate Verification System: Enhancing Security and Authenticity using Ethereum Blockchain and IPFS Image Analysis and Detection of Olive Leaf Diseases Using Recurrent Neural Networks The Relationship between Vertical Kinematic Eddy Heat Flux, Air Temperature and Turbulent Kinetic Energy in Atmospheric Boundary Layer: Baghdad City
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1