使用多尺度特征点匹配无组织数据集

Wu Weiyong, Wang Yinghui
{"title":"使用多尺度特征点匹配无组织数据集","authors":"Wu Weiyong, Wang Yinghui","doi":"10.1109/MACE.2010.5535311","DOIUrl":null,"url":null,"abstract":"In order to match partly overlapped data clouds measured from different view point, a multi-scale feature points detecting algorithm was proposed. A few feature points can be extracted from large number of original data quickly. This algorithm consists of three steps: discrete curvature computing, bilateral filtering process and feature points detecting. The number of feature points can be controlled by scale parameter approximately. After we got two feature point sets, an exhaustive searching process was carried out for maximal congruent triangles between two feature point sets, with which rotation and translation matrix could be computed easily to register original data sets. Although the exhaustive search is a time-consuming process, we still got high running speed by controlling the number of feature points.","PeriodicalId":6349,"journal":{"name":"2010 International Conference on Mechanic Automation and Control Engineering","volume":"5 1","pages":"5803-5806"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Matching unorganized data sets using multi-scale feature points\",\"authors\":\"Wu Weiyong, Wang Yinghui\",\"doi\":\"10.1109/MACE.2010.5535311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to match partly overlapped data clouds measured from different view point, a multi-scale feature points detecting algorithm was proposed. A few feature points can be extracted from large number of original data quickly. This algorithm consists of three steps: discrete curvature computing, bilateral filtering process and feature points detecting. The number of feature points can be controlled by scale parameter approximately. After we got two feature point sets, an exhaustive searching process was carried out for maximal congruent triangles between two feature point sets, with which rotation and translation matrix could be computed easily to register original data sets. Although the exhaustive search is a time-consuming process, we still got high running speed by controlling the number of feature points.\",\"PeriodicalId\":6349,\"journal\":{\"name\":\"2010 International Conference on Mechanic Automation and Control Engineering\",\"volume\":\"5 1\",\"pages\":\"5803-5806\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Mechanic Automation and Control Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MACE.2010.5535311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Mechanic Automation and Control Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MACE.2010.5535311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了匹配不同视点测量的部分重叠数据云,提出了一种多尺度特征点检测算法。可以从大量的原始数据中快速提取少量的特征点。该算法包括三个步骤:离散曲率计算、双边滤波处理和特征点检测。特征点的数量可以通过尺度参数进行近似控制。在得到两个特征点集后,对两个特征点集之间的最大同余三角形进行穷举搜索,从而方便地计算出旋转平移矩阵来配准原始数据集。虽然穷举搜索是一个耗时的过程,但通过控制特征点的数量,我们仍然获得了较高的运行速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Matching unorganized data sets using multi-scale feature points
In order to match partly overlapped data clouds measured from different view point, a multi-scale feature points detecting algorithm was proposed. A few feature points can be extracted from large number of original data quickly. This algorithm consists of three steps: discrete curvature computing, bilateral filtering process and feature points detecting. The number of feature points can be controlled by scale parameter approximately. After we got two feature point sets, an exhaustive searching process was carried out for maximal congruent triangles between two feature point sets, with which rotation and translation matrix could be computed easily to register original data sets. Although the exhaustive search is a time-consuming process, we still got high running speed by controlling the number of feature points.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on the framework of eco-city planning and development standard in Wuhan Effect of Y on microstructure of laser clad coatings reinforced by in situ synthesized TiB and TiC Preparation of Pd-B/TiO2 amorphous alloy and its catalytic performance on the thermal decomposition of ammonium perchlorate The new shape forming technology of composite concrete machine tool beds Matching unorganized data sets using multi-scale feature points
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1