基于条件生成对抗网络的情感面孔分类间标签插值

Silvan Mertes, Dominik Schiller, F. Lingenfelser, Thomas Kiderle, Valentin Kroner, Lama Diab, Elisabeth Andr'e
{"title":"基于条件生成对抗网络的情感面孔分类间标签插值","authors":"Silvan Mertes, Dominik Schiller, F. Lingenfelser, Thomas Kiderle, Valentin Kroner, Lama Diab, Elisabeth Andr'e","doi":"10.48550/arXiv.2204.12237","DOIUrl":null,"url":null,"abstract":"Generative adversarial networks offer the possibility to generate deceptively real images that are almost indistinguishable from actual photographs. Such systems however rely on the presence of large datasets to realistically replicate the corresponding domain. This is especially a problem if not only random new images are to be generated, but specific (continuous) features are to be co-modeled. A particularly important use case in \\emph{Human-Computer Interaction} (HCI) research is the generation of emotional images of human faces, which can be used for various use cases, such as the automatic generation of avatars. The problem hereby lies in the availability of training data. Most suitable datasets for this task rely on categorical emotion models and therefore feature only discrete annotation labels. This greatly hinders the learning and modeling of smooth transitions between displayed affective states. To overcome this challenge, we explore the potential of label interpolation to enhance networks trained on categorical datasets with the ability to generate images conditioned on continuous features.","PeriodicalId":88612,"journal":{"name":"News. Phi Delta Epsilon","volume":"101 1","pages":"67-87"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intercategorical Label Interpolation for Emotional Face Generation with Conditional Generative Adversarial Networks\",\"authors\":\"Silvan Mertes, Dominik Schiller, F. Lingenfelser, Thomas Kiderle, Valentin Kroner, Lama Diab, Elisabeth Andr'e\",\"doi\":\"10.48550/arXiv.2204.12237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generative adversarial networks offer the possibility to generate deceptively real images that are almost indistinguishable from actual photographs. Such systems however rely on the presence of large datasets to realistically replicate the corresponding domain. This is especially a problem if not only random new images are to be generated, but specific (continuous) features are to be co-modeled. A particularly important use case in \\\\emph{Human-Computer Interaction} (HCI) research is the generation of emotional images of human faces, which can be used for various use cases, such as the automatic generation of avatars. The problem hereby lies in the availability of training data. Most suitable datasets for this task rely on categorical emotion models and therefore feature only discrete annotation labels. This greatly hinders the learning and modeling of smooth transitions between displayed affective states. To overcome this challenge, we explore the potential of label interpolation to enhance networks trained on categorical datasets with the ability to generate images conditioned on continuous features.\",\"PeriodicalId\":88612,\"journal\":{\"name\":\"News. Phi Delta Epsilon\",\"volume\":\"101 1\",\"pages\":\"67-87\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"News. Phi Delta Epsilon\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2204.12237\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"News. Phi Delta Epsilon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2204.12237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

生成对抗网络提供了生成与实际照片几乎无法区分的虚假真实图像的可能性。然而,这样的系统依赖于大型数据集的存在来真实地复制相应的域。如果不仅要生成随机的新图像,而且要对特定的(连续的)特征进行协同建模,这就尤其是个问题。在\emph{人机交互}(HCI)研究中,一个特别重要的用例是人脸情感图像的生成,它可以用于各种用例,例如自动生成化身。这里的问题在于训练数据的可用性。大多数适合这项任务的数据集依赖于分类情感模型,因此只具有离散的注释标签。这极大地阻碍了情感状态之间平稳过渡的学习和建模。为了克服这一挑战,我们探索了标签插值的潜力,以增强在分类数据集上训练的网络,使其能够生成以连续特征为条件的图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intercategorical Label Interpolation for Emotional Face Generation with Conditional Generative Adversarial Networks
Generative adversarial networks offer the possibility to generate deceptively real images that are almost indistinguishable from actual photographs. Such systems however rely on the presence of large datasets to realistically replicate the corresponding domain. This is especially a problem if not only random new images are to be generated, but specific (continuous) features are to be co-modeled. A particularly important use case in \emph{Human-Computer Interaction} (HCI) research is the generation of emotional images of human faces, which can be used for various use cases, such as the automatic generation of avatars. The problem hereby lies in the availability of training data. Most suitable datasets for this task rely on categorical emotion models and therefore feature only discrete annotation labels. This greatly hinders the learning and modeling of smooth transitions between displayed affective states. To overcome this challenge, we explore the potential of label interpolation to enhance networks trained on categorical datasets with the ability to generate images conditioned on continuous features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GAN-Based LiDAR Intensity Simulation Improving Primate Sounds Classification using Binary Presorting for Deep Learning Towards exploring adversarial learning for anomaly detection in complex driving scenes A Study of Neural Collapse for Text Classification Using Artificial Intelligence to Reduce the Risk of Transfusion Hemolytic Reactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1