基于物联网射频识别设备的CMOS串联分流单极双掷发射/接收开关和低噪声放大器设计

IF 0.6 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Informacije Midem-Journal of Microelectronics Electronic Components and Materials Pub Date : 2020-09-22 DOI:10.33180/infmidem2020.203
M. Bhuiyan
{"title":"基于物联网射频识别设备的CMOS串联分流单极双掷发射/接收开关和低噪声放大器设计","authors":"M. Bhuiyan","doi":"10.33180/infmidem2020.203","DOIUrl":null,"url":null,"abstract":"The incompatibility between current RFID standards has led to the need for universal and Wi-Fi compatible RFID for IoT applications. Such a universal RFID requires an SPDT and an LNA to direct and amplify the received raw signal by the antenna. The SPDT suffers from low isolation, high insertion loss and low power handling capacity whereas the LNA suffers from bulky die area, lesser Q factor, limited tuning flexibility etc. because of passive inductor usage in current generation of devices. In this research, nano-CMOS inductorless SPDT and LNA designs are proposed. The SPDT adopts a series-shunt topology along with parallel resonant circuits and resistive body floating in order to achieve improved insertion loss and isolation performance whereas the LNA design is implemented with the gyrator concept in which the frequency selective tank circuit is formed with an active inductor accompanied by the buffer circuits. The post-layout simulation results, utilizing 90nm CMOS process of cadence virtuoso, exhibit that our SPDT design accomplishes 0.83dB insertion loss, a 45.3dB isolation, and a 11.3dBm power-handling capacity whereas the LNA achieves a peak gain of 33dB, bandwidth of 30MHz and NF of 6.6dB at 2.45GHz center frequency. Both the SPDT and LNA have very compact layout which are 0.003mm 2 and 127.7 μm 2 , respectively. Such SPDT and LNA design will boost the widespread adaptation of Wi-Fi-compatible IoT RFID technology.","PeriodicalId":56293,"journal":{"name":"Informacije Midem-Journal of Microelectronics Electronic Components and Materials","volume":"9 1","pages":"105-114"},"PeriodicalIF":0.6000,"publicationDate":"2020-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"CMOS series-shunt single-pole double-throw transmit/receive switch and low noise amplifier design for internet of things based radio frequency identification devices\",\"authors\":\"M. Bhuiyan\",\"doi\":\"10.33180/infmidem2020.203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The incompatibility between current RFID standards has led to the need for universal and Wi-Fi compatible RFID for IoT applications. Such a universal RFID requires an SPDT and an LNA to direct and amplify the received raw signal by the antenna. The SPDT suffers from low isolation, high insertion loss and low power handling capacity whereas the LNA suffers from bulky die area, lesser Q factor, limited tuning flexibility etc. because of passive inductor usage in current generation of devices. In this research, nano-CMOS inductorless SPDT and LNA designs are proposed. The SPDT adopts a series-shunt topology along with parallel resonant circuits and resistive body floating in order to achieve improved insertion loss and isolation performance whereas the LNA design is implemented with the gyrator concept in which the frequency selective tank circuit is formed with an active inductor accompanied by the buffer circuits. The post-layout simulation results, utilizing 90nm CMOS process of cadence virtuoso, exhibit that our SPDT design accomplishes 0.83dB insertion loss, a 45.3dB isolation, and a 11.3dBm power-handling capacity whereas the LNA achieves a peak gain of 33dB, bandwidth of 30MHz and NF of 6.6dB at 2.45GHz center frequency. Both the SPDT and LNA have very compact layout which are 0.003mm 2 and 127.7 μm 2 , respectively. Such SPDT and LNA design will boost the widespread adaptation of Wi-Fi-compatible IoT RFID technology.\",\"PeriodicalId\":56293,\"journal\":{\"name\":\"Informacije Midem-Journal of Microelectronics Electronic Components and Materials\",\"volume\":\"9 1\",\"pages\":\"105-114\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Informacije Midem-Journal of Microelectronics Electronic Components and Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.33180/infmidem2020.203\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informacije Midem-Journal of Microelectronics Electronic Components and Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.33180/infmidem2020.203","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 3

摘要

当前RFID标准之间的不兼容性导致物联网应用需要通用和Wi-Fi兼容的RFID。这种通用RFID需要SPDT和LNA来指导和放大天线接收到的原始信号。SPDT具有低隔离性、高插入损耗和低功率处理能力的缺点,而LNA由于在当前一代器件中使用无源电感器而具有体积庞大的芯片面积、较小的Q因子、有限的调谐灵活性等缺点。在本研究中,提出了纳米cmos无电感SPDT和LNA设计。SPDT采用串联分流拓扑,并联谐振电路和电阻体漂浮,以提高插入损耗和隔离性能,而LNA设计采用回旋器概念,其中频率选择槽电路由有源电感和缓冲电路组成。利用cadence virtuoso 90nm CMOS工艺的布局后仿真结果表明,SPDT设计实现了0.83dB的插入损耗,45.3dB的隔离和11.3dBm的功率处理能力,而LNA在2.45GHz中心频率下实现了33dB的峰值增益,30MHz的带宽和6.6dB的NF。SPDT和LNA都具有非常紧凑的布局,分别为0.003mm 2和127.7 μ 2。这种SPDT和LNA设计将促进wi - fi兼容物联网RFID技术的广泛适应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CMOS series-shunt single-pole double-throw transmit/receive switch and low noise amplifier design for internet of things based radio frequency identification devices
The incompatibility between current RFID standards has led to the need for universal and Wi-Fi compatible RFID for IoT applications. Such a universal RFID requires an SPDT and an LNA to direct and amplify the received raw signal by the antenna. The SPDT suffers from low isolation, high insertion loss and low power handling capacity whereas the LNA suffers from bulky die area, lesser Q factor, limited tuning flexibility etc. because of passive inductor usage in current generation of devices. In this research, nano-CMOS inductorless SPDT and LNA designs are proposed. The SPDT adopts a series-shunt topology along with parallel resonant circuits and resistive body floating in order to achieve improved insertion loss and isolation performance whereas the LNA design is implemented with the gyrator concept in which the frequency selective tank circuit is formed with an active inductor accompanied by the buffer circuits. The post-layout simulation results, utilizing 90nm CMOS process of cadence virtuoso, exhibit that our SPDT design accomplishes 0.83dB insertion loss, a 45.3dB isolation, and a 11.3dBm power-handling capacity whereas the LNA achieves a peak gain of 33dB, bandwidth of 30MHz and NF of 6.6dB at 2.45GHz center frequency. Both the SPDT and LNA have very compact layout which are 0.003mm 2 and 127.7 μm 2 , respectively. Such SPDT and LNA design will boost the widespread adaptation of Wi-Fi-compatible IoT RFID technology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
10
审稿时长
>12 weeks
期刊介绍: Informacije MIDEM publishes original research papers in the fields of microelectronics, electronic components and materials. Review papers are published upon invitation only. Scientific novelty and potential interest for a wider spectrum of readers is desired. Authors are encouraged to provide as much detail as possible for others to be able to replicate their results. Therefore, there is no page limit, provided that the text is concise and comprehensive, and any data that does not fit within a classical manuscript can be added as supplementary material. Topics of interest include: Microelectronics, Semiconductor devices, Nanotechnology, Electronic circuits and devices, Electronic sensors and actuators, Microelectromechanical systems (MEMS), Medical electronics, Bioelectronics, Power electronics, Embedded system electronics, System control electronics, Signal processing, Microwave and millimetre-wave techniques, Wireless and optical communications, Antenna technology, Optoelectronics, Photovoltaics, Ceramic materials for electronic devices, Thick and thin film materials for electronic devices.
期刊最新文献
Towards smaller single-point failure-resilient analog circuits by use of a genetic algorithm A New Design Optimization Methodology of Fully Differential Dynamic Comparator An Energy-efficient and Accuracy-adjustable bfloat16 Multiplier High-Gain Super Class-AB Bulk-driven Sub-threshold Low-Power CMOS Transconductance Amplifier for Biomedical Applications A New Quantum-Based Building Block for Designing a Nano-Circuit with Lower Complexity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1