通过太阳时间测量实现太阳能单机设备同步和自主能源管理

A. Adrián Santamaría Lancia, Nicholas Riedel, Rasmus Overgaard Ploug, Sune Thorsteinsson, P. Poulsen, A. Gisele dos Reis Benatto
{"title":"通过太阳时间测量实现太阳能单机设备同步和自主能源管理","authors":"A. Adrián Santamaría Lancia, Nicholas Riedel, Rasmus Overgaard Ploug, Sune Thorsteinsson, P. Poulsen, A. Gisele dos Reis Benatto","doi":"10.1109/PVSC.2018.8548183","DOIUrl":null,"url":null,"abstract":"This works present a method for synchronization of a solar device to real solar time for event triggering and energy management. Specifications require the devices to be off-grid and self-adjusting. Measurements of daylight duration were performed using one test device over the course of several months in Denmark. Analysis of viability over the accuracy of solar time determination and potential for self-adjusting energy management was carried out. Measurement results allowed for the development of an algorithm with good potential for performing the required tasks. Influence of variations in weather and different shadowing conditions were tested in two prototype devices. Results show a good potential for estimation of solar time and daily synchronization between devices within less than 5 minutes error.","PeriodicalId":6558,"journal":{"name":"2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC)","volume":"27 1","pages":"0632-0637"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synchronization of Solar Stand-alone Devices and Autonomous Energy Management through Solar Time Measurements\",\"authors\":\"A. Adrián Santamaría Lancia, Nicholas Riedel, Rasmus Overgaard Ploug, Sune Thorsteinsson, P. Poulsen, A. Gisele dos Reis Benatto\",\"doi\":\"10.1109/PVSC.2018.8548183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This works present a method for synchronization of a solar device to real solar time for event triggering and energy management. Specifications require the devices to be off-grid and self-adjusting. Measurements of daylight duration were performed using one test device over the course of several months in Denmark. Analysis of viability over the accuracy of solar time determination and potential for self-adjusting energy management was carried out. Measurement results allowed for the development of an algorithm with good potential for performing the required tasks. Influence of variations in weather and different shadowing conditions were tested in two prototype devices. Results show a good potential for estimation of solar time and daily synchronization between devices within less than 5 minutes error.\",\"PeriodicalId\":6558,\"journal\":{\"name\":\"2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC)\",\"volume\":\"27 1\",\"pages\":\"0632-0637\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC.2018.8548183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2018.8548183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本工作提出了一种将太阳能装置与实际太阳时间同步的方法,用于事件触发和能量管理。规格要求设备离网自调节。在丹麦的几个月里,使用一个测试设备进行了日光持续时间的测量。对太阳时测定精度的可行性和能量自调节管理的潜力进行了分析。测量结果允许开发具有执行所需任务的良好潜力的算法。在两个原型装置上测试了天气变化和不同遮蔽条件的影响。结果表明,在误差小于5分钟的情况下,该方法可以很好地估计太阳时间和设备之间的日同步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synchronization of Solar Stand-alone Devices and Autonomous Energy Management through Solar Time Measurements
This works present a method for synchronization of a solar device to real solar time for event triggering and energy management. Specifications require the devices to be off-grid and self-adjusting. Measurements of daylight duration were performed using one test device over the course of several months in Denmark. Analysis of viability over the accuracy of solar time determination and potential for self-adjusting energy management was carried out. Measurement results allowed for the development of an algorithm with good potential for performing the required tasks. Influence of variations in weather and different shadowing conditions were tested in two prototype devices. Results show a good potential for estimation of solar time and daily synchronization between devices within less than 5 minutes error.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characterizing high-mobility indium zinc oxide for the front transparent conductive oxide layer in silicon heterojunction solar cells Impact of substrate thickness on the surface passivation in high performance n-type solar cells Accelerating Solar For Decelerating Climate Change In Time Solid-state infrared-to-visible upconversion for sub-bandgap sensitization of photovoltaics Power Estimation of Photovoltaic System using 4 and 5-parameter Solar Cell Models under Real Outdoor Conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1