{"title":"生物医学网格划分技术综述","authors":"T. V. Smitha, Madhura. S, K. B. Ram, M. M.","doi":"10.36548/jei.2021.4.001","DOIUrl":null,"url":null,"abstract":"Engineering has a wide range of applications where more detailed and reliable data are needed, one of which is biomedicine. One of the aims of meshing is to use the Finite Element Approach to solve the problem. By analysing and segmenting raw medical imaging data, meshing aids in a better and more precise understanding of the organs and structures of human body. The main goal of this paper is to collect and review the various available methods in meshing. Also, a comparison study of different meshing techniques that are available in biomedicine is performed.","PeriodicalId":10994,"journal":{"name":"December 2021","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Review on Meshing Techniques in Biomedicine\",\"authors\":\"T. V. Smitha, Madhura. S, K. B. Ram, M. M.\",\"doi\":\"10.36548/jei.2021.4.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Engineering has a wide range of applications where more detailed and reliable data are needed, one of which is biomedicine. One of the aims of meshing is to use the Finite Element Approach to solve the problem. By analysing and segmenting raw medical imaging data, meshing aids in a better and more precise understanding of the organs and structures of human body. The main goal of this paper is to collect and review the various available methods in meshing. Also, a comparison study of different meshing techniques that are available in biomedicine is performed.\",\"PeriodicalId\":10994,\"journal\":{\"name\":\"December 2021\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"December 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36548/jei.2021.4.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"December 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36548/jei.2021.4.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Engineering has a wide range of applications where more detailed and reliable data are needed, one of which is biomedicine. One of the aims of meshing is to use the Finite Element Approach to solve the problem. By analysing and segmenting raw medical imaging data, meshing aids in a better and more precise understanding of the organs and structures of human body. The main goal of this paper is to collect and review the various available methods in meshing. Also, a comparison study of different meshing techniques that are available in biomedicine is performed.