用Cassegranian方法同时多面法设计新型抛物面碟形选矿厂

Diogo Canavarro, J. Chaves, M. Collares-Pereira
{"title":"用Cassegranian方法同时多面法设计新型抛物面碟形选矿厂","authors":"Diogo Canavarro, J. Chaves, M. Collares-Pereira","doi":"10.1063/1.5117584","DOIUrl":null,"url":null,"abstract":"Parabolic Dish concentrators are a well-known solution for many applications such as Concentrated Solar Power (CSP), solar metallurgical processes, solar reactors for fuel production, etc. Nevertheless, this technology is facing a tremendous challenge to become more efficient and competitive (especially within CSP field) in comparison with other technologies, namely Central Tower Receivers. A possible path to achieve this goal is to use a Cassegranian approach which enables a top-down design, placing the receiver closer to the ground and with potential higher concentration. In this paper, the theoretical limit of such configurations and a practical solution is presented with a discussion of its advantages and possible drawbacks.Parabolic Dish concentrators are a well-known solution for many applications such as Concentrated Solar Power (CSP), solar metallurgical processes, solar reactors for fuel production, etc. Nevertheless, this technology is facing a tremendous challenge to become more efficient and competitive (especially within CSP field) in comparison with other technologies, namely Central Tower Receivers. A possible path to achieve this goal is to use a Cassegranian approach which enables a top-down design, placing the receiver closer to the ground and with potential higher concentration. In this paper, the theoretical limit of such configurations and a practical solution is presented with a discussion of its advantages and possible drawbacks.","PeriodicalId":21790,"journal":{"name":"SOLARPACES 2018: International Conference on Concentrating Solar Power and Chemical Energy Systems","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Simultaneous multiple surface method for the design of new parabolic dish-type concentrator using a Cassegranian approach\",\"authors\":\"Diogo Canavarro, J. Chaves, M. Collares-Pereira\",\"doi\":\"10.1063/1.5117584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Parabolic Dish concentrators are a well-known solution for many applications such as Concentrated Solar Power (CSP), solar metallurgical processes, solar reactors for fuel production, etc. Nevertheless, this technology is facing a tremendous challenge to become more efficient and competitive (especially within CSP field) in comparison with other technologies, namely Central Tower Receivers. A possible path to achieve this goal is to use a Cassegranian approach which enables a top-down design, placing the receiver closer to the ground and with potential higher concentration. In this paper, the theoretical limit of such configurations and a practical solution is presented with a discussion of its advantages and possible drawbacks.Parabolic Dish concentrators are a well-known solution for many applications such as Concentrated Solar Power (CSP), solar metallurgical processes, solar reactors for fuel production, etc. Nevertheless, this technology is facing a tremendous challenge to become more efficient and competitive (especially within CSP field) in comparison with other technologies, namely Central Tower Receivers. A possible path to achieve this goal is to use a Cassegranian approach which enables a top-down design, placing the receiver closer to the ground and with potential higher concentration. In this paper, the theoretical limit of such configurations and a practical solution is presented with a discussion of its advantages and possible drawbacks.\",\"PeriodicalId\":21790,\"journal\":{\"name\":\"SOLARPACES 2018: International Conference on Concentrating Solar Power and Chemical Energy Systems\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SOLARPACES 2018: International Conference on Concentrating Solar Power and Chemical Energy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/1.5117584\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SOLARPACES 2018: International Conference on Concentrating Solar Power and Chemical Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5117584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

抛物面盘聚光器是一种众所周知的解决方案,适用于许多应用,如聚光太阳能发电(CSP)、太阳能冶金工艺、用于燃料生产的太阳能反应堆等。然而,与其他技术(即中央塔接收器)相比,该技术面临着提高效率和竞争力(特别是在光热领域)的巨大挑战。实现这一目标的一个可能途径是使用Cassegranian方法,这种方法可以实现自上而下的设计,将接收器放置在离地面更近的地方,并且可能具有更高的浓度。本文给出了这种结构的理论极限和实际解决方案,并讨论了它的优点和可能存在的缺点。抛物面盘聚光器是一种众所周知的解决方案,适用于许多应用,如聚光太阳能发电(CSP)、太阳能冶金工艺、用于燃料生产的太阳能反应堆等。然而,与其他技术(即中央塔接收器)相比,该技术面临着提高效率和竞争力(特别是在光热领域)的巨大挑战。实现这一目标的一个可能途径是使用Cassegranian方法,这种方法可以实现自上而下的设计,将接收器放置在离地面更近的地方,并且可能具有更高的浓度。本文给出了这种结构的理论极限和实际解决方案,并讨论了它的优点和可能存在的缺点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Simultaneous multiple surface method for the design of new parabolic dish-type concentrator using a Cassegranian approach
Parabolic Dish concentrators are a well-known solution for many applications such as Concentrated Solar Power (CSP), solar metallurgical processes, solar reactors for fuel production, etc. Nevertheless, this technology is facing a tremendous challenge to become more efficient and competitive (especially within CSP field) in comparison with other technologies, namely Central Tower Receivers. A possible path to achieve this goal is to use a Cassegranian approach which enables a top-down design, placing the receiver closer to the ground and with potential higher concentration. In this paper, the theoretical limit of such configurations and a practical solution is presented with a discussion of its advantages and possible drawbacks.Parabolic Dish concentrators are a well-known solution for many applications such as Concentrated Solar Power (CSP), solar metallurgical processes, solar reactors for fuel production, etc. Nevertheless, this technology is facing a tremendous challenge to become more efficient and competitive (especially within CSP field) in comparison with other technologies, namely Central Tower Receivers. A possible path to achieve this goal is to use a Cassegranian approach which enables a top-down design, placing the receiver closer to the ground and with potential higher concentration. In this paper, the theoretical limit of such configurations and a practical solution is presented with a discussion of its advantages and possible drawbacks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High-accuracy real-time monitoring of solar radiation attenuation in commercial solar towers Optical and thermal performance of a novel solar particle receiver The fluidized bed air heat exchanger in a hybrid Brayton-cycle solar power plant “MOSAIC”, A new CSP plant concept for the highest concentration ratios at the lowest cost Value contribution of solar plants to the Chilean electric system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1