Fred N. Buhler, Adam E. Mendrela, Yong Lim, Jeffrey Fredenburg, M. Flynn
{"title":"一个16通道噪声整形机器学习模拟-数字接口","authors":"Fred N. Buhler, Adam E. Mendrela, Yong Lim, Jeffrey Fredenburg, M. Flynn","doi":"10.1109/VLSIC.2016.7573509","DOIUrl":null,"url":null,"abstract":"A 16-channel machine learning digitizing interface embeds Inner-Product calculation within a Delta-Sigma Modulator (IPDSM) array canceling quantization noise and noise shaping the multiplicand. The prototype, with 16 independent IPDSM channels occupies a core area of 0.95mm2 in 65 nm CMOS. Each channel performs up to 100M multiplications/s. The system is demonstrated with a standard machine learning scheme for image recognition. It achieves the same classification accuracy for the MNIST set of hand-written digits as with the same algorithm on floating point DSP.","PeriodicalId":6512,"journal":{"name":"2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits)","volume":"103 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"A 16-channel noise-shaping machine learning analog-digital interface\",\"authors\":\"Fred N. Buhler, Adam E. Mendrela, Yong Lim, Jeffrey Fredenburg, M. Flynn\",\"doi\":\"10.1109/VLSIC.2016.7573509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A 16-channel machine learning digitizing interface embeds Inner-Product calculation within a Delta-Sigma Modulator (IPDSM) array canceling quantization noise and noise shaping the multiplicand. The prototype, with 16 independent IPDSM channels occupies a core area of 0.95mm2 in 65 nm CMOS. Each channel performs up to 100M multiplications/s. The system is demonstrated with a standard machine learning scheme for image recognition. It achieves the same classification accuracy for the MNIST set of hand-written digits as with the same algorithm on floating point DSP.\",\"PeriodicalId\":6512,\"journal\":{\"name\":\"2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits)\",\"volume\":\"103 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSIC.2016.7573509\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIC.2016.7573509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 16-channel noise-shaping machine learning analog-digital interface
A 16-channel machine learning digitizing interface embeds Inner-Product calculation within a Delta-Sigma Modulator (IPDSM) array canceling quantization noise and noise shaping the multiplicand. The prototype, with 16 independent IPDSM channels occupies a core area of 0.95mm2 in 65 nm CMOS. Each channel performs up to 100M multiplications/s. The system is demonstrated with a standard machine learning scheme for image recognition. It achieves the same classification accuracy for the MNIST set of hand-written digits as with the same algorithm on floating point DSP.