Aimee E Mattei, Andres H Gutierrez, William D Martin, Frances E Terry, Brian J Roberts, Amy S Rosenberg, Anne S De Groot
{"title":"含有非天然氨基酸序列的计算机免疫原性评估:一种使用现有计算机算法基础设施的方法和未来增强的愿景。","authors":"Aimee E Mattei, Andres H Gutierrez, William D Martin, Frances E Terry, Brian J Roberts, Amy S Rosenberg, Anne S De Groot","doi":"10.3389/fddsv.2022.952326","DOIUrl":null,"url":null,"abstract":"<p><p>The <i>in silico</i> prediction of T cell epitopes within any peptide or biologic drug candidate serves as an important first step for assessing immunogenicity. T cell epitopes bind human leukocyte antigen (HLA) by a well-characterized interaction of amino acid side chains and pockets in the HLA molecule binding groove. Immunoinformatics tools, such as the EpiMatrix algorithm, have been developed to screen natural amino acid sequences for peptides that will bind HLA. In addition to commonly occurring in synthetic peptide impurities, unnatural amino acids (UAA) are also often incorporated into novel peptide therapeutics to improve properties of the drug product. To date, the HLA binding properties of peptides containing UAA are not accurately estimated by most algorithms. Both scenarios warrant the need for enhanced predictive tools. The authors developed an <i>in silico</i> method for modeling the impact of a given UAA on a peptide's likelihood of binding to HLA and, by extension, its immunogenic potential. <i>In silico</i> assessment of immunogenic potential allows for risk-based selection of best candidate peptides in further confirmatory <i>in vitro, ex vivo</i> and <i>in vivo</i> assays, thereby reducing the overall cost of immunogenicity evaluation. Examples demonstrating <i>in silico</i> immunogenicity prediction for product impurities that are commonly found in formulations of the generic peptides teriparatide and semaglutide are provided. Next, this article discusses how HLA binding studies can be used to estimate the binding potentials of commonly encountered UAA and \"correct\" <i>in silico</i> estimates of binding based on their naturally occurring counterparts. As demonstrated here, these in vitro binding studies are usually performed with known ligands which have been modified to contain UAA in HLA anchor positions. An example using D-amino acids in relative binding position 1 (P1) of the PADRE peptide is presented. As more HLA binding data become available, new predictive models allowing for the direct estimation of HLA binding for peptides containing UAA can be established.</p>","PeriodicalId":73080,"journal":{"name":"Frontiers in drug discovery","volume":"2 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10026553/pdf/nihms-1854666.pdf","citationCount":"2","resultStr":"{\"title\":\"<i>In silico</i> Immunogenicity Assessment for Sequences Containing Unnatural Amino Acids: A Method Using Existing <i>in silico</i> Algorithm Infrastructure and a Vision for Future Enhancements.\",\"authors\":\"Aimee E Mattei, Andres H Gutierrez, William D Martin, Frances E Terry, Brian J Roberts, Amy S Rosenberg, Anne S De Groot\",\"doi\":\"10.3389/fddsv.2022.952326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The <i>in silico</i> prediction of T cell epitopes within any peptide or biologic drug candidate serves as an important first step for assessing immunogenicity. T cell epitopes bind human leukocyte antigen (HLA) by a well-characterized interaction of amino acid side chains and pockets in the HLA molecule binding groove. Immunoinformatics tools, such as the EpiMatrix algorithm, have been developed to screen natural amino acid sequences for peptides that will bind HLA. In addition to commonly occurring in synthetic peptide impurities, unnatural amino acids (UAA) are also often incorporated into novel peptide therapeutics to improve properties of the drug product. To date, the HLA binding properties of peptides containing UAA are not accurately estimated by most algorithms. Both scenarios warrant the need for enhanced predictive tools. The authors developed an <i>in silico</i> method for modeling the impact of a given UAA on a peptide's likelihood of binding to HLA and, by extension, its immunogenic potential. <i>In silico</i> assessment of immunogenic potential allows for risk-based selection of best candidate peptides in further confirmatory <i>in vitro, ex vivo</i> and <i>in vivo</i> assays, thereby reducing the overall cost of immunogenicity evaluation. Examples demonstrating <i>in silico</i> immunogenicity prediction for product impurities that are commonly found in formulations of the generic peptides teriparatide and semaglutide are provided. Next, this article discusses how HLA binding studies can be used to estimate the binding potentials of commonly encountered UAA and \\\"correct\\\" <i>in silico</i> estimates of binding based on their naturally occurring counterparts. As demonstrated here, these in vitro binding studies are usually performed with known ligands which have been modified to contain UAA in HLA anchor positions. An example using D-amino acids in relative binding position 1 (P1) of the PADRE peptide is presented. As more HLA binding data become available, new predictive models allowing for the direct estimation of HLA binding for peptides containing UAA can be established.</p>\",\"PeriodicalId\":73080,\"journal\":{\"name\":\"Frontiers in drug discovery\",\"volume\":\"2 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10026553/pdf/nihms-1854666.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in drug discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fddsv.2022.952326\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in drug discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fddsv.2022.952326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In silico Immunogenicity Assessment for Sequences Containing Unnatural Amino Acids: A Method Using Existing in silico Algorithm Infrastructure and a Vision for Future Enhancements.
The in silico prediction of T cell epitopes within any peptide or biologic drug candidate serves as an important first step for assessing immunogenicity. T cell epitopes bind human leukocyte antigen (HLA) by a well-characterized interaction of amino acid side chains and pockets in the HLA molecule binding groove. Immunoinformatics tools, such as the EpiMatrix algorithm, have been developed to screen natural amino acid sequences for peptides that will bind HLA. In addition to commonly occurring in synthetic peptide impurities, unnatural amino acids (UAA) are also often incorporated into novel peptide therapeutics to improve properties of the drug product. To date, the HLA binding properties of peptides containing UAA are not accurately estimated by most algorithms. Both scenarios warrant the need for enhanced predictive tools. The authors developed an in silico method for modeling the impact of a given UAA on a peptide's likelihood of binding to HLA and, by extension, its immunogenic potential. In silico assessment of immunogenic potential allows for risk-based selection of best candidate peptides in further confirmatory in vitro, ex vivo and in vivo assays, thereby reducing the overall cost of immunogenicity evaluation. Examples demonstrating in silico immunogenicity prediction for product impurities that are commonly found in formulations of the generic peptides teriparatide and semaglutide are provided. Next, this article discusses how HLA binding studies can be used to estimate the binding potentials of commonly encountered UAA and "correct" in silico estimates of binding based on their naturally occurring counterparts. As demonstrated here, these in vitro binding studies are usually performed with known ligands which have been modified to contain UAA in HLA anchor positions. An example using D-amino acids in relative binding position 1 (P1) of the PADRE peptide is presented. As more HLA binding data become available, new predictive models allowing for the direct estimation of HLA binding for peptides containing UAA can be established.