{"title":"基于全集成多通道前端芯片的新型家庭睡眠监测系统及其多层次分析","authors":"Shaofei Ying;Lin Wang;Yahui Zhao;Maolin Ma;Qin Ding;Jiaxin Xie;Dezhong Yao;Srinjoy Mitra;Mingyi Chen;Tiejun Liu","doi":"10.1109/JTEHM.2023.3248621","DOIUrl":null,"url":null,"abstract":"Objective: A novel in-home sleep monitoring system with an 8-channel biopotential acquisition front-end chip is presented and validated via multilevel data analyses and comparision with advanced polysomnography. Methods and procedures: The chip includes a cascaded low-noise programmable gain amplifier (PGA) and 24-bit \n<inline-formula> <tex-math>$\\Sigma $ </tex-math></inline-formula>\n-\n<inline-formula> <tex-math>$\\Delta $ </tex-math></inline-formula>\n analog-to-digital converter (ADC). The PGA is based on three op-amp structure while the ADC adopts cascade of integrator feedforward and feedback (CIFF-B) architecture. An innovative chopper-modulated input-scaling-down technique enhances the dynamic range. The proposed system and commercial polysomnography were used for in-home sleep monitoring of 20 healthy participants. The consistency and significance of the two groups’ data were analyzed. Results: Fabricated in 180 nm BCD technology, the input-referred noise, input impedance, common-mode rejection ratio, and dynamic range of the acquisition front-end chip were \n<inline-formula> <tex-math>$0.89 \\mu $ </tex-math></inline-formula>\nVpp, 1.25 GN), 113.9 dB, and 119.8 dB. The kappa coefficients between the sleep stage labels of the three scorers were 0.80, 0.76, and 0.79. The consistency of the slowing index, multiscale entropy, and percentile features between the two devices reached 0.958, 0.885, and 0.834. The macro sleep architecture characteristics of the two devices were not significantly different (all p \n<inline-formula> <tex-math>$>$ </tex-math></inline-formula>\n 0.05). Conclusion: The proposed chip was applied to develop an in-home sleep monitoring system with significantly reduced size, power, and cost. Multilevel analyses demonstrated that this system collects stable and accurate in-home sleep data. Clinical impact: The proposed system can be applied for long-term in-home sleep monitoring outside of laboratory environments and sleep disorders screening that with low cost.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"11 ","pages":"211-222"},"PeriodicalIF":3.7000,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10052760","citationCount":"1","resultStr":"{\"title\":\"A Novel In-Home Sleep Monitoring System Based on Fully Integrated Multichannel Front-End Chip and Its Multilevel Analyses\",\"authors\":\"Shaofei Ying;Lin Wang;Yahui Zhao;Maolin Ma;Qin Ding;Jiaxin Xie;Dezhong Yao;Srinjoy Mitra;Mingyi Chen;Tiejun Liu\",\"doi\":\"10.1109/JTEHM.2023.3248621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objective: A novel in-home sleep monitoring system with an 8-channel biopotential acquisition front-end chip is presented and validated via multilevel data analyses and comparision with advanced polysomnography. Methods and procedures: The chip includes a cascaded low-noise programmable gain amplifier (PGA) and 24-bit \\n<inline-formula> <tex-math>$\\\\Sigma $ </tex-math></inline-formula>\\n-\\n<inline-formula> <tex-math>$\\\\Delta $ </tex-math></inline-formula>\\n analog-to-digital converter (ADC). The PGA is based on three op-amp structure while the ADC adopts cascade of integrator feedforward and feedback (CIFF-B) architecture. An innovative chopper-modulated input-scaling-down technique enhances the dynamic range. The proposed system and commercial polysomnography were used for in-home sleep monitoring of 20 healthy participants. The consistency and significance of the two groups’ data were analyzed. Results: Fabricated in 180 nm BCD technology, the input-referred noise, input impedance, common-mode rejection ratio, and dynamic range of the acquisition front-end chip were \\n<inline-formula> <tex-math>$0.89 \\\\mu $ </tex-math></inline-formula>\\nVpp, 1.25 GN), 113.9 dB, and 119.8 dB. The kappa coefficients between the sleep stage labels of the three scorers were 0.80, 0.76, and 0.79. The consistency of the slowing index, multiscale entropy, and percentile features between the two devices reached 0.958, 0.885, and 0.834. The macro sleep architecture characteristics of the two devices were not significantly different (all p \\n<inline-formula> <tex-math>$>$ </tex-math></inline-formula>\\n 0.05). Conclusion: The proposed chip was applied to develop an in-home sleep monitoring system with significantly reduced size, power, and cost. Multilevel analyses demonstrated that this system collects stable and accurate in-home sleep data. Clinical impact: The proposed system can be applied for long-term in-home sleep monitoring outside of laboratory environments and sleep disorders screening that with low cost.\",\"PeriodicalId\":54255,\"journal\":{\"name\":\"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm\",\"volume\":\"11 \",\"pages\":\"211-222\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10052760\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10052760/\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10052760/","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
A Novel In-Home Sleep Monitoring System Based on Fully Integrated Multichannel Front-End Chip and Its Multilevel Analyses
Objective: A novel in-home sleep monitoring system with an 8-channel biopotential acquisition front-end chip is presented and validated via multilevel data analyses and comparision with advanced polysomnography. Methods and procedures: The chip includes a cascaded low-noise programmable gain amplifier (PGA) and 24-bit
$\Sigma $
-
$\Delta $
analog-to-digital converter (ADC). The PGA is based on three op-amp structure while the ADC adopts cascade of integrator feedforward and feedback (CIFF-B) architecture. An innovative chopper-modulated input-scaling-down technique enhances the dynamic range. The proposed system and commercial polysomnography were used for in-home sleep monitoring of 20 healthy participants. The consistency and significance of the two groups’ data were analyzed. Results: Fabricated in 180 nm BCD technology, the input-referred noise, input impedance, common-mode rejection ratio, and dynamic range of the acquisition front-end chip were
$0.89 \mu $
Vpp, 1.25 GN), 113.9 dB, and 119.8 dB. The kappa coefficients between the sleep stage labels of the three scorers were 0.80, 0.76, and 0.79. The consistency of the slowing index, multiscale entropy, and percentile features between the two devices reached 0.958, 0.885, and 0.834. The macro sleep architecture characteristics of the two devices were not significantly different (all p
$>$
0.05). Conclusion: The proposed chip was applied to develop an in-home sleep monitoring system with significantly reduced size, power, and cost. Multilevel analyses demonstrated that this system collects stable and accurate in-home sleep data. Clinical impact: The proposed system can be applied for long-term in-home sleep monitoring outside of laboratory environments and sleep disorders screening that with low cost.
期刊介绍:
The IEEE Journal of Translational Engineering in Health and Medicine is an open access product that bridges the engineering and clinical worlds, focusing on detailed descriptions of advanced technical solutions to a clinical need along with clinical results and healthcare relevance. The journal provides a platform for state-of-the-art technology directions in the interdisciplinary field of biomedical engineering, embracing engineering, life sciences and medicine. A unique aspect of the journal is its ability to foster a collaboration between physicians and engineers for presenting broad and compelling real world technological and engineering solutions that can be implemented in the interest of improving quality of patient care and treatment outcomes, thereby reducing costs and improving efficiency. The journal provides an active forum for clinical research and relevant state-of the-art technology for members of all the IEEE societies that have an interest in biomedical engineering as well as reaching out directly to physicians and the medical community through the American Medical Association (AMA) and other clinical societies. The scope of the journal includes, but is not limited, to topics on: Medical devices, healthcare delivery systems, global healthcare initiatives, and ICT based services; Technological relevance to healthcare cost reduction; Technology affecting healthcare management, decision-making, and policy; Advanced technical work that is applied to solving specific clinical needs.