斯洛伐克合成生物学生态系统的重新合成:挑战和机遇

Miroslav Gasparek , Jakub Hantabal
{"title":"斯洛伐克合成生物学生态系统的重新合成:挑战和机遇","authors":"Miroslav Gasparek ,&nbsp;Jakub Hantabal","doi":"10.1016/j.biotno.2022.06.001","DOIUrl":null,"url":null,"abstract":"<div><p>Synthetic biology is an engineering discipline that applies engineering principles to rationally design novel biological systems. It has the potential to contribute to solving major global challenges in a multitude of areas, from healthcare to sustainability. While the engineering biology landscape is robust and well-established in certain countries, the ecosystem and infrastructure for genetic engineering in other countries, including Slovakia, are underdeveloped. Consequently, such countries are missing the major economic and social benefits that the practical applications of the rational design of biological systems may provide. In this work, we briefly assess the status of the synthetic biology landscape in Slovakia in different areas, including research efforts, industrial participation, governmental policy, and the educational landscape. We describe the major challenges that the Slovak synthetic biology sector faces and propose a strategy that academics, policymakers, and industry could take to activate the proliferation of the Slovak synthetic biology ecosystem.</p></div>","PeriodicalId":100186,"journal":{"name":"Biotechnology Notes","volume":"3 ","pages":"Pages 45-49"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665906922000058/pdfft?md5=a6173eb35b98a985032fab7450ce9079&pid=1-s2.0-S2665906922000058-main.pdf","citationCount":"0","resultStr":"{\"title\":\"De novo synthesis of synthetic biology ecosystem in Slovakia: Challenges and opportunities\",\"authors\":\"Miroslav Gasparek ,&nbsp;Jakub Hantabal\",\"doi\":\"10.1016/j.biotno.2022.06.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Synthetic biology is an engineering discipline that applies engineering principles to rationally design novel biological systems. It has the potential to contribute to solving major global challenges in a multitude of areas, from healthcare to sustainability. While the engineering biology landscape is robust and well-established in certain countries, the ecosystem and infrastructure for genetic engineering in other countries, including Slovakia, are underdeveloped. Consequently, such countries are missing the major economic and social benefits that the practical applications of the rational design of biological systems may provide. In this work, we briefly assess the status of the synthetic biology landscape in Slovakia in different areas, including research efforts, industrial participation, governmental policy, and the educational landscape. We describe the major challenges that the Slovak synthetic biology sector faces and propose a strategy that academics, policymakers, and industry could take to activate the proliferation of the Slovak synthetic biology ecosystem.</p></div>\",\"PeriodicalId\":100186,\"journal\":{\"name\":\"Biotechnology Notes\",\"volume\":\"3 \",\"pages\":\"Pages 45-49\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2665906922000058/pdfft?md5=a6173eb35b98a985032fab7450ce9079&pid=1-s2.0-S2665906922000058-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Notes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2665906922000058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Notes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665906922000058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

合成生物学是一门应用工程原理合理设计新型生物系统的工程学科。它有潜力为解决从医疗保健到可持续性等众多领域的重大全球挑战作出贡献。虽然工程生物学的景观在某些国家是健全和完善的,但在包括斯洛伐克在内的其他国家,基因工程的生态系统和基础设施是不发达的。因此,这些国家错过了合理设计生物系统的实际应用可能提供的主要经济和社会效益。在这项工作中,我们简要地评估了斯洛伐克合成生物学景观在不同领域的现状,包括研究努力、工业参与、政府政策和教育景观。我们描述了斯洛伐克合成生物学部门面临的主要挑战,并提出了学术界、政策制定者和工业界可以采取的战略,以激活斯洛伐克合成生物学生态系统的扩散。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
De novo synthesis of synthetic biology ecosystem in Slovakia: Challenges and opportunities

Synthetic biology is an engineering discipline that applies engineering principles to rationally design novel biological systems. It has the potential to contribute to solving major global challenges in a multitude of areas, from healthcare to sustainability. While the engineering biology landscape is robust and well-established in certain countries, the ecosystem and infrastructure for genetic engineering in other countries, including Slovakia, are underdeveloped. Consequently, such countries are missing the major economic and social benefits that the practical applications of the rational design of biological systems may provide. In this work, we briefly assess the status of the synthetic biology landscape in Slovakia in different areas, including research efforts, industrial participation, governmental policy, and the educational landscape. We describe the major challenges that the Slovak synthetic biology sector faces and propose a strategy that academics, policymakers, and industry could take to activate the proliferation of the Slovak synthetic biology ecosystem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
期刊最新文献
Incorporating omics-based tools into endophytic fungal research Organ-on-chip technology: Opportunities and challenges Identifying Chlorella vulgaris and Chlorella sorokiniana as sustainable organisms to bioconvert glucosamine into valuable biomass Engineered microbial consortia for next-generation feedstocks Antibiotic susceptibility and virulence factors of bacterial species among cancer patients
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1