{"title":"病媒蚊 RNA 介导的抗病毒免疫防御系统的发现简史。","authors":"Carol D Blair","doi":"10.1128/mmbr.00191-21","DOIUrl":null,"url":null,"abstract":"<p><p>Arthropod-borne viruses (arboviruses) persist in a natural cycle that includes infections of humans or other vertebrates and transmission between vertebrates by infected arthropods, most commonly mosquitos. Arboviruses can cause serious, sometimes fatal diseases in humans and other vertebrates but cause little pathology in their mosquito vectors. Knowledge of the interactions between mosquito vectors and the arboviruses that they transmit is an important facet of developing schemes to control transmission. Mosquito innate immune responses to virus infection modulate virus replication in the vector, and understanding the components and mechanisms of the immune response could lead to improved methods for interrupting the transmission cycle. The most important aspect of mosquito antiviral defense is the exogenous small interfering RNA (exo-siRNA) pathway, one arm of the RNA interference (RNAi) silencing response. Our research as well as that of many other groups over the past 25 years to define this pathway are reviewed here. A more recently recognized but less well-understood RNA-mediated mosquito defense against arbovirus infections, the PIWI-interacting RNA (piRNA) pathway, is also described.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":"87 1","pages":"e0019121"},"PeriodicalIF":8.0000,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10029339/pdf/","citationCount":"2","resultStr":"{\"title\":\"A Brief History of the Discovery of RNA-Mediated Antiviral Immune Defenses in Vector Mosquitos.\",\"authors\":\"Carol D Blair\",\"doi\":\"10.1128/mmbr.00191-21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Arthropod-borne viruses (arboviruses) persist in a natural cycle that includes infections of humans or other vertebrates and transmission between vertebrates by infected arthropods, most commonly mosquitos. Arboviruses can cause serious, sometimes fatal diseases in humans and other vertebrates but cause little pathology in their mosquito vectors. Knowledge of the interactions between mosquito vectors and the arboviruses that they transmit is an important facet of developing schemes to control transmission. Mosquito innate immune responses to virus infection modulate virus replication in the vector, and understanding the components and mechanisms of the immune response could lead to improved methods for interrupting the transmission cycle. The most important aspect of mosquito antiviral defense is the exogenous small interfering RNA (exo-siRNA) pathway, one arm of the RNA interference (RNAi) silencing response. Our research as well as that of many other groups over the past 25 years to define this pathway are reviewed here. A more recently recognized but less well-understood RNA-mediated mosquito defense against arbovirus infections, the PIWI-interacting RNA (piRNA) pathway, is also described.</p>\",\"PeriodicalId\":18520,\"journal\":{\"name\":\"Microbiology and Molecular Biology Reviews\",\"volume\":\"87 1\",\"pages\":\"e0019121\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2023-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10029339/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiology and Molecular Biology Reviews\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/mmbr.00191-21\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/12/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology and Molecular Biology Reviews","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/mmbr.00191-21","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/12/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
A Brief History of the Discovery of RNA-Mediated Antiviral Immune Defenses in Vector Mosquitos.
Arthropod-borne viruses (arboviruses) persist in a natural cycle that includes infections of humans or other vertebrates and transmission between vertebrates by infected arthropods, most commonly mosquitos. Arboviruses can cause serious, sometimes fatal diseases in humans and other vertebrates but cause little pathology in their mosquito vectors. Knowledge of the interactions between mosquito vectors and the arboviruses that they transmit is an important facet of developing schemes to control transmission. Mosquito innate immune responses to virus infection modulate virus replication in the vector, and understanding the components and mechanisms of the immune response could lead to improved methods for interrupting the transmission cycle. The most important aspect of mosquito antiviral defense is the exogenous small interfering RNA (exo-siRNA) pathway, one arm of the RNA interference (RNAi) silencing response. Our research as well as that of many other groups over the past 25 years to define this pathway are reviewed here. A more recently recognized but less well-understood RNA-mediated mosquito defense against arbovirus infections, the PIWI-interacting RNA (piRNA) pathway, is also described.
期刊介绍:
Microbiology and Molecular Biology Reviews (MMBR), a journal that explores the significance and interrelationships of recent discoveries in various microbiology fields, publishes review articles that help both specialists and nonspecialists understand and apply the latest findings in their own research. MMBR covers a wide range of topics in microbiology, including microbial ecology, evolution, parasitology, biotechnology, and immunology. The journal caters to scientists with diverse interests in all areas of microbial science and encompasses viruses, bacteria, archaea, fungi, unicellular eukaryotes, and microbial parasites. MMBR primarily publishes authoritative and critical reviews that push the boundaries of knowledge, appealing to both specialists and generalists. The journal often includes descriptive figures and tables to enhance understanding. Indexed/Abstracted in various databases such as Agricola, BIOSIS Previews, CAB Abstracts, Cambridge Scientific Abstracts, Chemical Abstracts Service, Current Contents- Life Sciences, EMBASE, Food Science and Technology Abstracts, Illustrata, MEDLINE, Science Citation Index Expanded (Web of Science), Summon, and Scopus, among others.