{"title":"基于声学和症状的新冠肺炎多模式护理点诊断","authors":"Srikanth Raj Chetupalli;Prashant Krishnan;Neeraj Sharma;Ananya Muguli;Rohit Kumar;Viral Nanda;Lancelot Mark Pinto;Prasanta Kumar Ghosh;Sriram Ganapathy","doi":"10.1109/JTEHM.2023.3250700","DOIUrl":null,"url":null,"abstract":"Background: The COVID-19 pandemic has highlighted the need to invent alternative respiratory health diagnosis methodologies which provide improvement with respect to time, cost, physical distancing and detection performance. In this context, identifying acoustic bio-markers of respiratory diseases has received renewed interest. Objective: In this paper, we aim to design COVID-19 diagnostics based on analyzing the acoustics and symptoms data. Towards this, the data is composed of cough, breathing, and speech signals, and health symptoms record, collected using a web-application over a period of twenty months. Methods: We investigate the use of time-frequency features for acoustic signals and binary features for encoding different health symptoms. We experiment with use of classifiers like logistic regression, support vector machines and long-short term memory (LSTM) network models on the acoustic data, while decision tree models are proposed for the symptoms data. Results: We show that a multi-modal integration of inference from different acoustic signal categories and symptoms achieves an area-under-curve (AUC) of 96.3%, a statistically significant improvement when compared against any individual modality (\n<inline-formula> <tex-math>$p < 0.05$ </tex-math></inline-formula>\n). Experimentation with different feature representations suggests that the mel-spectrogram acoustic features performs relatively better across the three kinds of acoustic signals. Further, a score analysis with data recorded from newer SARS-CoV-2 variants highlights the generalization ability of the proposed diagnostic approach for COVID-19 detection. Conclusion: The proposed method shows a promising direction for COVID-19 detection using a multi-modal dataset, while generalizing to new COVID variants.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"11 ","pages":"199-210"},"PeriodicalIF":3.7000,"publicationDate":"2023-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10064207","citationCount":"10","resultStr":"{\"title\":\"Multi-Modal Point-of-Care Diagnostics for COVID-19 Based on Acoustics and Symptoms\",\"authors\":\"Srikanth Raj Chetupalli;Prashant Krishnan;Neeraj Sharma;Ananya Muguli;Rohit Kumar;Viral Nanda;Lancelot Mark Pinto;Prasanta Kumar Ghosh;Sriram Ganapathy\",\"doi\":\"10.1109/JTEHM.2023.3250700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: The COVID-19 pandemic has highlighted the need to invent alternative respiratory health diagnosis methodologies which provide improvement with respect to time, cost, physical distancing and detection performance. In this context, identifying acoustic bio-markers of respiratory diseases has received renewed interest. Objective: In this paper, we aim to design COVID-19 diagnostics based on analyzing the acoustics and symptoms data. Towards this, the data is composed of cough, breathing, and speech signals, and health symptoms record, collected using a web-application over a period of twenty months. Methods: We investigate the use of time-frequency features for acoustic signals and binary features for encoding different health symptoms. We experiment with use of classifiers like logistic regression, support vector machines and long-short term memory (LSTM) network models on the acoustic data, while decision tree models are proposed for the symptoms data. Results: We show that a multi-modal integration of inference from different acoustic signal categories and symptoms achieves an area-under-curve (AUC) of 96.3%, a statistically significant improvement when compared against any individual modality (\\n<inline-formula> <tex-math>$p < 0.05$ </tex-math></inline-formula>\\n). Experimentation with different feature representations suggests that the mel-spectrogram acoustic features performs relatively better across the three kinds of acoustic signals. Further, a score analysis with data recorded from newer SARS-CoV-2 variants highlights the generalization ability of the proposed diagnostic approach for COVID-19 detection. Conclusion: The proposed method shows a promising direction for COVID-19 detection using a multi-modal dataset, while generalizing to new COVID variants.\",\"PeriodicalId\":54255,\"journal\":{\"name\":\"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm\",\"volume\":\"11 \",\"pages\":\"199-210\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10064207\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10064207/\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10064207/","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Multi-Modal Point-of-Care Diagnostics for COVID-19 Based on Acoustics and Symptoms
Background: The COVID-19 pandemic has highlighted the need to invent alternative respiratory health diagnosis methodologies which provide improvement with respect to time, cost, physical distancing and detection performance. In this context, identifying acoustic bio-markers of respiratory diseases has received renewed interest. Objective: In this paper, we aim to design COVID-19 diagnostics based on analyzing the acoustics and symptoms data. Towards this, the data is composed of cough, breathing, and speech signals, and health symptoms record, collected using a web-application over a period of twenty months. Methods: We investigate the use of time-frequency features for acoustic signals and binary features for encoding different health symptoms. We experiment with use of classifiers like logistic regression, support vector machines and long-short term memory (LSTM) network models on the acoustic data, while decision tree models are proposed for the symptoms data. Results: We show that a multi-modal integration of inference from different acoustic signal categories and symptoms achieves an area-under-curve (AUC) of 96.3%, a statistically significant improvement when compared against any individual modality (
$p < 0.05$
). Experimentation with different feature representations suggests that the mel-spectrogram acoustic features performs relatively better across the three kinds of acoustic signals. Further, a score analysis with data recorded from newer SARS-CoV-2 variants highlights the generalization ability of the proposed diagnostic approach for COVID-19 detection. Conclusion: The proposed method shows a promising direction for COVID-19 detection using a multi-modal dataset, while generalizing to new COVID variants.
期刊介绍:
The IEEE Journal of Translational Engineering in Health and Medicine is an open access product that bridges the engineering and clinical worlds, focusing on detailed descriptions of advanced technical solutions to a clinical need along with clinical results and healthcare relevance. The journal provides a platform for state-of-the-art technology directions in the interdisciplinary field of biomedical engineering, embracing engineering, life sciences and medicine. A unique aspect of the journal is its ability to foster a collaboration between physicians and engineers for presenting broad and compelling real world technological and engineering solutions that can be implemented in the interest of improving quality of patient care and treatment outcomes, thereby reducing costs and improving efficiency. The journal provides an active forum for clinical research and relevant state-of the-art technology for members of all the IEEE societies that have an interest in biomedical engineering as well as reaching out directly to physicians and the medical community through the American Medical Association (AMA) and other clinical societies. The scope of the journal includes, but is not limited, to topics on: Medical devices, healthcare delivery systems, global healthcare initiatives, and ICT based services; Technological relevance to healthcare cost reduction; Technology affecting healthcare management, decision-making, and policy; Advanced technical work that is applied to solving specific clinical needs.